UDK 517. 962.2, 519. 876.2
G.A. Kaldybaeva, A.J. Satybaev NUMERICAL DEFINITION OF DENSITY IN A DYNAMIC PROBLEM OF TERMO-ELASTICITY (Kyrgyz Republic, Osh State University, Osh Technological University)
Ұсынылып отырған мақалада ортаның тығыздығын ақырлы-айырымдық әдіспен
қайта қалыпқа келтіру әдісі сипатталған. Кері есептің физикалық интерпретациясы
берілген және оның шешімі ақырлы айырымдармен ұсынылады. Тура есептің шешімі
белгілі болған кездегі кері есептің шешімі үшін тұжырымдама (теорема)
қалыптастырылады.
В данной статье описан метод восстановления плотности среды конечно-
разностным методом. Дается физическая интерпретация обратной задачи и
предлагается ее решение в конечных разностях и формулируется утверждение (теорема)
для решения обратной задачи при известном решении прямой задачи.
Environmental density is recovered in this article by finite-different methods. This article
describes a method for reconstructing the medium density finite-difference method. Physical
interpretation of the inverse problem and offers a solution in finite differences and formulate a
115
statement (Theorem) to solve the inverse problem with a known solution of the direct
problem.
The dynamic inverse problem was investigated by V.G. Yakhno and S.O.
Apbasov [1,2].
Recovery of thermostarined condition set on a part of displaced limit was considered
by Kozlov V.A.
Problem. Let on border x=0 halfspace
0
,
z R z R the thermal impact is
set and thus temperature on border is raised from initial temperature Т 0 up to Т 1 . Then the
mathematical model thermo-elasticity is described by the equation [3]:
)
1
(
,
,
))],
,
(
(
))
(
2
)
(
3
(
,
)
(
2
)
(
[
,
)
(
2
2
R t R z t z R z z z t z z z z t t z z
z s d e erfc kt kt z erfc kt z kt z erfc T T t z t z dy y s R where 0
2
0
1
0
,
2
1
)
(
,
2
*
)
exp(
))
2
/(
(
*
)
(
)
,
(
)
,
(
,
)
(
)
(
2
T T K 0
1
,
,
,
- fixed positive numbers,
( , )
z t - adhering of temperature,
( )
y - thermal expansion, к – temperature conduction, g=q/n, q – heat-return n – heat
conduction.
The physical sense of a direct problem of thermo-edacity consists in definition of
convected heat exchange u (z, t), occurring in environment under initial and boundary
conditions
)
2
(
,
0
0
,
,
0
0
,
t t t z t t z
)
3
(
.
))
,
0
(
(
)
0
(
2
)
0
(
)
0
(
2
)
0
(
3
0
,
t R z z t z
Let's note, that a boundary condition (3) at,
),
0
1
(
))
,
0
(
(
T T y t R
models thermal impact on a surface of halfspace R + , i.e. temperature on border raises
from Т 0 up to Т 1 . Thus between border of environment х=0 and environment occurs
convected heat exchange.
Inverse problem. To define
z
- density of environment from (1) - (3) at the
additional information concerning the decision of a direct problem
)
4
(
0
],
,
0
[
),
(
0
)
,
(
,
const T T t t f z t z
and at known meanings λ (z), μ (z) – coefficients of Lame,
y
- thermal expansion.
From the equation (1) we will get
5
).
,
(
2
3
)
,
(
2
3
2
,
2
2
,
2
2
,
2
t z z z z z t z z z z z z z t z z z z z t z z z z z z t t z
116
Let's take new variety
z dy y y y z x 0
2
and new functions
,
,
,
,
,
,
t z t z x u z z x c z z x в z z x a
.
,
,
t z t z x
Then, using the following expressions
,
,
,
,
,
,
,
,
2
z x z z x z z x z zz x z xx zz z x z tt tt x x c z x в z x t x t z x u x u x u u
from the equation (5) we have
6
.
,
2
2
3
,
2
2
3
2
2
1
2
2
x a t x x c x в x c x в x a t x x c x в c в u x c x в x a x c x в x a u x a x c x в c в u u x x x x x x x xx tt
,
0
,
0
t t x u
)
7
(
.
,
,
0
*
0
0
2
0
0
2
0
0
2
0
3
,
0
t t a c в c в c в x t x u x
8
.
,
0
,
,
0
T t t f t x u x
Let concerning required function
)
(
),
(
x c x b and х а and be executed
where
,
)
,
(
,
)
(
),
(
,
1
0
t x x c x b х а
.
,
)
,
0
(
,
,
,
,
,
0
,
0
0
,
6
1
3
0
2
0
1
0
6
0
0
2
x x d t x p suр R R C t x M M х M R C х C
(9)
Let's designate through
x x c x в x a x S 2
ln
.
From here
.
exp
2
0
x dy y S x c x в x a (10)
We allocate singular part of a direct problem decision, representing it as, continuing
all connected functions on х to R by an even mode
,
,
~
,
x t x R t x u t x u
(11)
117
where
t x u ,
~
- continuous smooth function is.
Substituting the received correlation (6), (7) and taking into account (10), (11), we
will get a reverse task with the data on the characteristics
,
,
,
,
1
*
,
2
2
3
,
2
2
3
2
2
R x x R t x u u x S a x a t x x c x в x c x в t x x c x в c в u x c x в c в u u x t x x x x x x x xx tt
(12)
x c x в dy y S x c x в c в x R x R x S x x x 2
exp
2
2
/
2
0
,
0
0
2
0
0
a c в S
,
0
2
0
0
,
exp
2
0
c в a d S x c x в x a x
)
13
(
,
,
0
*
0
0
2
0
0
2
0
3
,
0
t a c в c в t x u x x
.
,
0
,
,
0
T x t f t x u x
(14)
Here unknown function is the function
x a .
By force of a condition (9), (14) and hyperbolic equation it is possible to be limited
by consideration of a inverse problem (12) - (14) in area
.
,
2
/
,
0
,
,
x T t x T x R R t x T
Finite-different solution. Using net designation [4], for the numerical solution of a
reverse task (12) - (14) we will take net area:
,
,
2
/
,
0
;
2
,
0
,
,
0
,
2
/
,
,
ih T kh ih T ih N k N i N T h kh t ih x T k i h
where
h - net step on x, t. Now let's make net analogue of inverse problem (12) - (14):
,
,
0
,
,
,
,
1
*
2
2
3
2
2
3
2
2
N i R u T kh ih u S a c в c в c в c в u c в c в u u i i i h u i i x i i i i k i i i x x x i i x x x x tt
(15)
118
,
2
,
2
1
exp
2
,
2
,
exp
*
2
2
/
2
0
0
0
1
0
0
0
0
1
1
c в a h S c в a a c в S h S c в c в R R S i l l i i i i l l i i x x i x i
1
2
,
1
,
*
2
2
3
0
0
0
0
0
0
0
N k a c в c в u k i x
(16)
,
2
,
0
,
0
N k f u k i k i
(17)
where
,
,
,
,
,
,
,
x x k i k i i i i в a u c в a
t t x x i x x x u u S u c ,
,
,
,
,
tt xx x x x x x u u x S u c в a ,
,
,
,
,
,
,
and also
.
/
1
h a a a i i x
From the equation (15) we have different analogue of the Dalamber’s formula
h u u a c в c в h f f u l j i k j j l j i k i l l j j j j x x i k i k k i 2
2
1
1
2
1
1
1
*
2
2
2
/
(18)
i l l j l j i k j l j i k j j j j j j i l l j l j i k j j j j x x a c в c в h a c в c в h 1
1
2
1
2
2
1
1
2
2
2
2
3
2
2
3
.
2
,
;
1
,
1
,
2
1
2
1
1
2
i N i k N i h u u S h l j i k j l j i k j i l l j j
Let's describe algorithm of the solution of a reverse task (16) - (17). From different
equations (17) the zero layer is defined:
19
.
2
;
/
2
,
;
2
,
0
,
0
0
0
0
0
0
0
0
0
0
с в a a c в S f R N k f u k k
From different equations (16) the first layer is defined.
,
2
,
0
,
2
/
2
3
0
0
0
0
0
0
1
N k a c в c в h f u k k k
,
2
/
exp
2
/
2
/
2
,
0
1
1
0
1
0
1
1
0
1
1
1
1
1
h S c в h c c в в R h R R S u R
20
.
2
/
exp
2
0
1
1
1
h S c в a
We admit the layer -i is constructed. According to the formula (18)
1
,
1
2
,
1
1
i in i N i k u k i a layer is defined.
Then
1
1
1
,
,
i i i a S R is defined according to the formulas (15). Thus are
unknown reverse tasks:
N i u a k i i ,
0
,
,
are defined.
According to the method [5] it is possible to show, that constructed
119
i i i k i k i k i a S R h u u u ,
,
,
/
,
1
are taken accordingly for net functions
i i i i i k i a S R h u u u ,
,
,
/
,
1
of a reverse task (15), (16), (17) with
h O .
According to the method [5] it is also possible to prove the following theorem.