2.2. Примеры решения текстовых задач в 5 - 6 классе Решение задач по-разному – мощное средство постижения мира, осознание разнообразия свойств и отношений его элементов. Разные методы и способы решения - средство развития познавательного интереса, умения отстаивать свою точку зрения, способности слышать и понимать других людей.
Арифметический метод. Пример. Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним? Решение.
1-й способ. 1) 82 32 + 78 = 192 (чел.) - удвоенное число студентов, поющих в хоре, занимающихся танцами и художественной гимнастикой;
2) 192 : 2 = 96 (чел.) - поют в хоре, занимаются танцами и художественной гимнастикой;
3) 96 – 32 = 64 (чел.) - поют в хоре;
4) 96 – 78 = 18 (чел.) - занимаются танцами;
5) 96 – 82 = 14 (чел.) - занимаются художественной гимнастикой.
2-й способ. 1) 82 – 32 = 50 (чел.) - настолько больше студентов поют в хоре, чем
занимаются художественной гимнастикой;
2) 50 + 78 = 128 (чел.) - удвоенное число студентов, поющих в хоре;
3) 128 : 2 = 64 (чел.) - поют в хоре;
4) 78 – 64 = 14 (чел.) — занимаются художественной гимнастикой;
5) 82 – 64 = 18 (чел.) - занимаются танцами.
Ответ: 64 студента поют в хоре, 14 студентов занимаются художественной гимнастикой, 18 студентов занимаются танцами.
Алгебраический метод. Пример 1. Рабочий может сделать определенное число деталей за три дня. Если он в день будет делать на 10 деталей больше, то справится с заданием за два дня. Какова первоначальная производительность рабочего и сколько деталей он должен сделать? Решение. 1-й способ. Пусть х д. в день - первоначальная производительность рабочего. Тогда (х + 10) д. в день - новая производительность, Зх д. – число деталей, которое он должен сделать. По условию получаем уравнение Зх = 2(х + 10), решив которое найдем х = 20. первоначальная производительность рабочего 20 деталей в день, он должен сделать 60 деталей.
2-й способ.
Пусть х д. – число деталей, которое должен сделать рабочий. Тогда д. в день - новая производительность, ( – 10) д. в день – первоначальная производительность рабочего по условию получаем уравнение х = 3(– 10), решив которое найдем х = 60. Рабочий должен сделать 60 деталей, его первоначальная производительность 20 деталей в день.
Ответ: 20 деталей в день; 60 деталей.
Приме 2. На солнышке грелось несколько кошек. У них вместе лап на 10 больше, чем ушей. Сколько кошек грелось на солнышке?