Е. coli, Bacillus subtilis, Corynebacterium glutamicum, Brevibacterium Jlavum, Serratia marcescens
Iистидин
B.Jlavum, C. glutamicum, S. marcescens,виды Steptomyces
Изолейцин
B. Jlavum, C. glutamicum, B. subtilis, S. marcescens
Лейцин
Brevibacterium lactofermentum, S. marcescens,C. glutamicum
Лизин
B. Jlavum, C. glutamicum
Фенилаланин
B. Jlavum, C. glutamicum
Пролин
B. Jlavum
Серин
C. glutamicum
Аминокислота
Микроорганизмы
Треонин
Триптофан
Тирозин
Валин
В. flavum, С. glutamicum, Arthrobacter parafmens, Е. coli, S. marcescens
Micrococcus, Candida utils, B. subtilis B. flavum, C. glutamicum B. flavum, C. glutamicum
Разработка технологической схемы получения отдельной аминокислоты полностью базируется на знании путей и механизмов регуляции биосинтеза конкретной аминокислоты. Необходимого дисбаланса метаболизма, обеспечивающего сверхсинтез целевого продукта, добиваются путем строго контролируемых изменений состава и условий среды.
Производство лизина. По содержанию лизина наименее сбалансированы белки злаковых культур, у которых его дефицит составляет от 20 до 50 %. На территории России недостаток лизина в кормах не может быть восполнен за счет сои, поэтому в нашей стране производство этой аминокислоты было организовано первым. Для удовлетворения потребностей животноводства в лизине крупнотоннажное производство налажено в Испании, Франции, Японии и США.
В клетках микроорганизмов лизин синтезируется из аспараги- новой кислоты и служит конечным продуктом разветвленного метаболического пути биосинтеза, общего для трех аминокислот — лизина, метионина и треонина (рис. 3.3).
Таким образом, в процессе новообразования аминокислот из общего предшественника одновременно с лизином возникают две другие аминокислоты — метионин и треонин. В этом случае эффекта накопления в среде всего одной целевой аминокислоты добиваются путем блокирования процессов, ведущих к синтезу побочных аминокислот, возникающих в связи с разветвлением метаболического путк
Образование лизина в клетке бактерии находится под строги\ метаболическим контролем. У типичных продуцентов L-лизина — Brevibacterium flavum иCorynebacterium glutamicum — фермент ас- партаткиназа, открывающий метаболический путь, является алло- стерическим белком, чувствительным к ингибированию по принципу обратной связи при совместном и согласованном действие побочных продуктов L-треонина и L-лизина. При накоплении тре онина и лизина в избыточной концентрации ингибируется аспаг- таткиназа и их синтез останавливается, при пониженной концентрации любой из двух аминокислот процесс активизируется.
Рис. 3.3. Схема биосинтеза лизина, метионина и треонина в клетках Corynebacterium glutamicum иBrevibacterium flavum: —»• — ингибирование по принципу обратной связи
руется или не функционирует гомосериндегидрогеназа, в результате чего блокируется синтез метионина и треонина. Такие мутанты являются ауксотрофами по гомосерину или треонину (метионину); внутриклеточная концентрация треонина у них существенно снижена, что снимает блокаду с аспартаткиназы. Поэтому при выращивании мутантных штаммов в среде, где присутствуют лимитирующие концентрации метионина и треонина, они способны образовывать избыточные количества лизина. Мутанты второго типа дефектны по структурному гену, детерминирующему конформа- цию аспартаткиназы. В итоге фермент теряет чувствительность к высоким концентрациям аллостерического ингибитора — лизина.
Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2 — 4 мкг/л), детергенты (твин-40 и твин- 60) или производные высших жирных кислот (пальмитаты, стеа- Раты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает выделение аминокислот в среду.
Для культивирования штаммов микроорганизмов при производстве аминокислот как источники углерода наиболее доступны Углеводы — глюкоза, сахароза и реже фруктоза и мальтоза. Для снижения стоимости питательной среды в качестве источнико
в
углерода используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала, сульфитные щелока. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты (до 1,5%), пропионовой кислоты, метанола, этанола (до 1 %) и н-парафинов. В качестве источников азота применяют мочевину и соли аммония (сульфаты и фосфаты). Для успешного развития микроорганизмы нуждаются в стимуляторах роста, в качестве которых выступают экстракты кукурузы, дрожжей и солодовых ростков, гидролизаты отрубей и дрожжей, витамины группы В. Кроме того, в питательную среду добавляют необходимые для жизнедеятельности макро- и микроэлементы (Р, Са, Mg, Мп, Fe и др.). На процесс биосинтеза аминокислот существенное влияние оказывает снабжение воздухом, при этом степень аэрации индивидуальна для производства каждой конкретной аминокислоты. Стерильный воздух подается специальными турбинными мешалками (рис. 3.4). Опыты показали, что лизин появляется в культуральной среде начиная с середины экспоненциальной фазы роста культуры клеток микроорганизма и достигает максимума к ее концу. Поэтому на первой стадии технологического процесса формируют биомассу продуцента, которую выращивают в специальных посевных аппаратах в течение суток (рН 7,0 — 7,2; температура 28 — 30 °С), а затем подают в производственный ферментер, заполненный питательной средой. Лизин начинает поступать в культуральную жидкость через 25 — 30 ч после начала ферментации. По завершении процесса ферментации (через 55 — 72 ч) жидкую фазу отделяют от культуры клеток микроорганизма фильтрованием и используют для выделения из нее лизина.
Высокоочищенные препараты лизина получают после фракционирования фильтрата культуральной жидкости методом ионообменной хроматографии на катеоните. С этой целью лизин переводят в форму катиона:
H3N—СН— СООН I
(СН2)4
I
NH3
Для данного процесса фильтрат обрабатывают соляной кислотой до рН 1,6—2,0 (рН < рК,). Обладая двумя положительно заряженными ионогенными группировками, лизин прочно сорбируется на смоле и элюируется с нее в виде индивидуального соединения 0,5 — 5 %-м раствором гидроксида аммония после выхода всех других катионов. Элюат концентрируют в вакууме при температуре 60 °С, переводят в форму монохлоргидрата, после чего высушивают и дополнительно чистят с помощью перекристаллизации. В ре-
Рис. 3.4. Технологическая схема получения кормовых препаратов лизина (по B.C.Шевелухе и др., 1998):
1 — подача свекловичной мелассы; 2 — водная суспензия кукурузного экстракта и питательных солей; 3 — нагревательная колонка; 4, 5 — теплообменники; 6 — посевные аппараты; 7 — подача посевного материала; 8 — система фильтров для очистки и стерилизации воздуха; 9 — ферментер; 10 — фильтры для очистки отходящих газов; 11 — получение монохлоридгидрата лизина; 12 — подача соляной кислоты; 13, 14 — выход и подогрев монохлоридгидрата лизина; 15 — выпа- ривательная установка; 16 — сборник ЖКЛ; 17 — смешивание ЖКЛ с наполнителем; 18 — распылитель; 19— подача горячего воздуха; 20— очиститель воздуха; 21 — отделение сухого препарата лизина от воздуха; 22 — приемник ККЛ
зультате получают препараты кристаллического лизина 97 — 98 %-й чистоты, которые используют для повышения питательной ценности пищевых продуктов и в медицинской промышленности.
Кроме высокоочищенных препаратов лизина получают иные виды его товарной формы: жидкий концентрат лизина (ЖКЛ), сухой кормовой концентрат лизина (ККЛ) и высококонцентрированные кормовые препараты, характеризующиеся относительно меньшей степенью очистки в сравнении с первым препаратом
.
Второй по значимости незаменимой аминокислотой для питания человека и животных является метионин, который получают преимущественно путем химического синтеза, что экономически более выгодно в сравнении с микробиологическим способом.