Даны координаты середин сторон треугольника: А(1; 2), B(7; 4), С(3; -4). Составить уравнения сторон треугольника.
Дано уравнение прямой . Написать уравнение в отрезках и нормальное уравнение.
Найти расстояние от точки пересечения прямых, заданных уравнениями до прямой .
В равнобедренном прямоугольном треугольнике АВС известны вершина острого угла А(2; 6) и уравнение противолежащего катета . Составить уравнения двух других сторон.
Найти расстояние от точки М (0; -1; 1) до плоскости, проходящей через точки А(1; 4; -5) и В(4; 2; -3) и перпендикулярной плоскости .
Вычислить косинусы внутренних двугранных углов тетраэдра, образованного плоскостями координат и плоскостью, проходящей через точки А(2; 1; 8), В(-1; 3; 4) и С(3; 0; 12).
Дана плоскость . Найти углы её нормали с осями координат. Проверить, проходит ли плоскость через одну из следующих точек: А(1; -2; 1), В(3; 2; 4), С, D.
Написать канонические уравнения прямой:.
Найти точку пересечения прямой с плоскостью и угол между ними.
При каком значении m прямые будут взаимно перпендикулярны?
Три вершины трапеции находятся в точках А(3; -1; 2), В(1; 2; -1) и С(-1; 1; -3). Найти уравнение средней линии трапеции, параллельной АВ.
Вариант 14
Вершинами треугольника служат точки A(-8; 1), B(1; -2) и C(6; 3). Найти центр описанной около него окружности.
Через точку М (3; 2) провести прямую так, чтобы её отрезок, заключенный между осями координат, делился в данной точке пополам.
Составить уравнение прямой, имеющей угловой коэффициент и отстоящей от начала координат на расстояние .
Две прямые, проходящие через начало координат, образуют собой угол . Отношение угловых коэффициентов этих прямых равно . Составить уравнения этих прямых.
Написать уравнения плоскостей, параллельных плоскости, проходящей через точки M(3; 3; -4), N(5; 0; -2), Р(4; 0; 0) и удаленных от неё на расстояние d = 4.
Написать уравнение плоскости, проходящей через ось ОX и составляющей угол 60° с плоскостью Y = X.
Определить объем тетраэдра, ограниченного координатными плоскостями и плоскостью, проходящей через точку М(-3; -6; 4) перпендикулярно вектору ={2; -1; 6}.
Написать канонические уравнения прямой:.
Найти острый угол между прямыми:
Показать, что треугольник с вершинами в точках А(1; -2; 1), В(3; -3; -1) и С(4; 0; 3) прямоугольный. Найти его периметр.
Прямая проходит через точки А(3; -1; 0) и В(х; -7; 3) и параллельна плоскости . Определить абсциссу точки В и направляющие косинусы построенной прямой.