Даны вершины треугольника: А (3; 0), В (0; 3) и С(-2; -1). Составить уравнение высоты, опущенной из вершины С на сторону АВ, и найти её длину.
Из пучка прямых а центром в точке О(2; -5) выбрать прямую, отсекающую на положительной полуоси ординат отрезок, равный 3 единицам. Полученное уравнение прямой привести к нормальному виду.
Найти прямую, проходящую через точку пересечения прямыхи параллельную прямой .
Найти уравнение прямой, проходящей через точку. М (-4; 1)и образующей угол с прямой .
Найти расстояние от точки пересечения плоскостей до плоскости, проходящей через точку М (-1;-1; 1) перпендикулярно вектору .
Дан тетраэдр с вершинами А (1; -2; 2), В (2; -3; -6),С (5; 1; 4) и D (0; -4; 4). Найти угол между гранями ABD и BCD.
Плоскость проходит через точку М (-5; 4; 13) и отсекает на осях координат равные отрезки. Плоскость задана уравнением, . При каком значении m плоскости и будут перпендикулярны?
Написать канонические уравнения прямой:
Даны две вершины параллелограмма ABCD: С (-2; 3; -5) и D (0; 4; -7) и точка пересечения диагоналей M (1,2,-3; 5). Найти уравнение стороны AB и угол между диагоналями AC и BD.
При каких значениях В и С прямая перпендикулярна плоскости ?
Вершины четырехугольника имеют координаты Р(1; 0), Q(2; ), R(5; 2) и S(6; -1). Найти точку пересечения его диагоналей.
Диагонали ромба равны 8 и 3 единицам. Написать уравнения сторон ромба, если большая диагональ лежит на оси ОХ, а меньшая - на оси ОУ . Вычислить расстояние между параллельными сторонами этого ромба.
Составить уравнение перпендикуляра, восстановленного в середине отрезка, соединяющего точки М(-1; 7) и N(3; -1). Какой угол образует он с положительным направлением оси ОХ?
Вычислить угол между прямыми .
Составить уравнение плоскости, проходящей через точку А (1; 0; -2) перпендикулярно вектору , где В (2; -1; 3), С (0; -3; 2). Указать особенности в расположении плоскости. Найти расстояние от точки D (6; -2; 13) до построенной плоскости.
При каком значении m угол между плоскостями и равен ? Плоскость проходит через точки А (), В (-3; 1; 1) и С (2; 4; -7), плоскость задана уравнением .
Найти уравнение плоскости, проходящей через точки М (1; -1; 2), N (3; 1; -2) и перпендикулярной к плоскости ХОY.
Написать канонические уравнения прямой:.
Составить канонические и параметрические уравнения прямой, проходящей через точку М (1; 2; 3), если направляющий вектор прямой образует с координатными осями ОХ и OZ углы = 120°, = 45°, а с осью ОY - острый угол.