Модуль. Свойства модуля
Определение. Модуль числа или абсолютная величина числа равна , если больше или равно нулю и равна , если меньше нуля:
Из определения следует, что для любого действительного числа , .
Теорема Абсолютная величина действительного числа равна большему из двух чисел или .
1. Если число положительно, то отрицательно, т. е. . Отсюда следует, что .
В этом случае , т. е. совпадает с большим из двух чисел и .
2. Если отрицательно, тогда положительно и , т. е. большим числом является . По определению, в этом случае, --- снова, равно большему из двух чисел и .
Следствие Из теоремы следует, что .
В самом деле, как , так и равны большему из чисел и , а значит, равны между собой.
Следствие Для любого действительного числа справедливы неравенства , .
Умножая второе равенство на (при этом знак неравенства изменится на противоположный), мы получим следующие неравенства: , справедливые для любого действительного числа . Объединяя последние два неравенства в одно, получаем: .
Теорема Абсолютная величина любого действительного числа равна арифметическому квадратному корню из : .
В самом деле, если , то, по определению модуля числа, будем иметь . С другой стороны, при , , значит .
Если , тогда и и в этом случае .
Эта теорема дает возможность при решении некоторых задач заменять на .
Геометрически означает расстояние на координатной прямой от точки, изображающей число , до начала отсчета.
Если , то на координатной прямой существует две точки и , равноудаленной от нуля, модули которых равны.
Если , то на координатной прямой изображается точкой .
Свойства модуля
Из этого свойства следует, что ; .
Достарыңызбен бөлісу: |