К простейшим (не обязательно простым) уравнениям мы будем относить уравнения, решаемые одним из нижеприведенных равносильных переходов: (??)(??)(??)(??)
Примеры решения простейших уравнений.
Пример Решим уравнение .
Решение.
Ответ. .
Пример Решим уравнение .
Решение.
Ответ. .
Пример Решим уравнение .
Решение.
Ответ. .
Остановимся подробнее на уравнениях, в которых встречается сумма модулей [??] (формулы (??)--(??)).
Теорема Сумма модулей равна алгебраической сумме подмодульнх величин тогда и только тогда, когда каждая величина имеет тот знак, с которым она входит в алгебраическую сумму.
Пример Решить уравнение
Решение. Так как , то мы имеем равенство вида , где , . Поэтому исходное уравнение равносильно системе:
Ответ. .
Теорема Сумма модулей равна модулю алгебраической суммы подмодульных величин тогда и только тогда, когда все величины имеют тот знак, с которым они входят в алгебраическую сумму, либо все величины имеют противоположный знак одновременно.
Пример Решить уравнение
Решение. ``Загоняем'' коэффициенты 2 и 5 под знак модуля и ``изолируем'' сумму модулей:
По константам получаем . Действительно, , то есть уравнение имеет вид . Следовательно, уравнение равносильно совокупности двух систем:
то есть .
Ответ. .
К простейшим (не обязательно простым) неравенствам мы будем относить неравенства, решаемые одним из нижеприведенных равносильных переходов:
(??)
(??)
Примеры решения простейших неравенств.
Достарыңызбен бөлісу: |