Техника, технология и физико-математические науки



жүктеу 2.89 Mb.
Pdf просмотр
бет1/17
Дата31.03.2017
өлшемі2.89 Mb.
  1   2   3   4   5   6   7   8   9   ...   17

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

3
 ~ 
 
 
 
ТЕХНИКА, ТЕХНОЛОГИЯ И ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ 
 
 
 
ӘОК 377. 031.4 +53 
Ғ. Имашев 
 
Х.Досмұхамедов атындағы Атырау мемлекеттік университеті, Атырау қаласы 
 
 
ЭЛЕКТРОСТАТИКА КУРСЫНДА ТІРЕК СИГНАЛДАРЫН ҚОЛДАНУ 
 
В  данной  статье  рассматриваются  вопросы  опорных  сигналов  в  процессе 
изучения  курса  физики,  а  также  методика  преподавания  разработанных  опорных 
конспектов по электродинамике.   
 
    
In this article the questions of supporting signals are examined in the process of 
study  of  course  of  physics,  and  also  methodology  of  teaching  of  the  worked  out 
supporting compendia on an electrodynamics. 
 
Қазіргі  кезде  білім  беру  саласындағы  өзекті  мәселе  –  білім  мазмұнына 
жаңалық  еңгізудің  тиімді  жаңа    әдістерін  іздестіру  болып  отыр.  Әлемдік  білім 
кеңістігіндегі  оқытудың  озық  технологияларын  қамтитын  жаңа  білім  мазмұны 
шынайы жарыс, адал бәсекеге қабілетті адам тәрбиелеуді қамтамасыз етуі тиіс. 
 
Елбасымыз Н.Назарбаев «ұлттың бәсекеге қабілеттілігі бірінші кезекте оның 
білім  деңгейімен  анықталады»  деген  байламы  мектептерге  зор  мақсаттар  мен 
міндеттер жүктейтіні  белгілі.Қоғамдық  қарым-қатынастардың  өзгеруі, жаңа  білімнің 
жинақталуы,  өндірістің  жетілдірілуі,  әлеуметтік  прогресс  педагог  қызметінің 
мазмұндық  сипатына  да  тікелей  ықпал  етеді.  Соған  байланысты,  қазіргі  заманда 
мектептің  аса  маңызды  мақсаттарының  бірі  оқушылардың  интеллектуалдық 
қабілеттерін,  өз  бетінше  ойлау  және  шығармашылық  белсенділігін  дамыту  болып 
табылады.  Бұл  мақсатты  жүзеге  асыру  үшін  оқыту  үдерісінде  оқушыларды 
шығармашылық  оқу  -  танымдық  қызметке  тарту  керек.Білім  стандартында 
белгіленген,  білім  беру  бағдарламаларында  айқындалған  талаптарды  нақты 
жағдайларда  жүзеге  асыруға  мүмкіндік  беретін  педагогикалық  технологиялардың 
бірі деңгейлеп-саралап оқыту технологиясы  [1].
 
Жұмыста  физика  курсын  оқытуда  модульдік  жүйеге  сәйкес  тірек 
сигналдарын  және  саралап  оқыту  тапcырмаларын  қолдануға  арналған.Оқушының 
білімді жүйелі түрде меңгеруде және қабілет деңгейлерін дамытуда модульдік оқыту 
технологиясының маңызы ерекше. Себебі аталмыш технология әдістері оқушыларды 
өз бетімен жұмыс істеуге, қорытындылар жасауға, жүйелі білім алуға жетелейді, өзін 
-  өзі,  өзгені  де  бағалай  білуге  үйретеді.  Инновациялық  технологияны  қолдану 
мақсатында оқу материалдарын тірек  сигналдары арқылы  түсіндіру,  қорытындылау 
және бекіту тиімді тәсілдердің біріне саналады [4].  
 
Жұмыстың  мақсаты:  орта  мектепте  электродинамика  курсын  оқытуда  тірек 
мәтіндері  мен  саралап  оқытуды  пайдаланудың  тиімді  жолдарын  қарастыру.  Осы 
мақсатқа 
жету 
үшін 
төмендегідей
міндеттер 
анықталды: 
электродинамика 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

4
 ~ 
 
курсындағы  тірек  сигналдары  мен  саралап  оқыту  тапсырмаларының  жүйесін 
анықтау;  тірек  сигналдары  мен  деңгейлік  тапсырмаларды  құрастыру;  саралап 
оқытудың түрлері мен оның жаңа әдістерін талдау.
 
Жұмыстың  практикалық  мәні:  физика  курсының  электродинамика  тарауын 
оқытуда  тірек  мәтіндері  мен  саралап  оқытуды  пайдаланып  жүргізілетін  сабақтар 
анықталынып, дайындалған оқу - әдістемелік материалдар іс- тәжірибеде қолдануға 
мүмкіндік береді.
 
Тірекмәтіндерінжасақтау  жаңа  технология  принциптеріне  негізделуі  керек. 
Физика пәні бойынша тірек мәтіндері-бұл, құрамында белгілі бір ретпен орналасқан 
ережелер,  формулалар,  анықтамалар,  сызбалар,  өлшем  бірліктер  және  т.б. 
болатын, тақырыптың көрнекілік түрі.  
Тірек  сигналдарының  құрамында  абстрактылы  теориялық  материалдың 
мазмұнын түсіндіруде пайдаланылатын нақтылық құралдарын бейнелейтін белгілер: 
ғылыми  түсініктер,  формулалар,  сызбалар,  нақты  суреттер,  белгілеулер,  кілтті 
сөздер,  қысқаша  сөйлемдер  және  т.б.  болады.  Тірекмәтіндерінде  оқушының 
меңгеруіне  қажетті  материалдың  барлығы  тіркеледі.Тірек  мәтіндері  материалды 
жақсы  меңгеруге  көмектеседі,  себебі  олар  оқылатын  материалды  тереңірек 
талдауға,  материалды  оңай  есте  сақтауға,  жауап  бергенде  материалды  сауатты 
және  нақты  баяндауға,  алынған  білімерді  жүйелеуге  мүмкіндік  береді.  Тірек 
мәтіндерін пайдалану мұғалімге бүкіл оқытылатын материалды оқушыларға көрнекі 
түрде  көрсетуге және олардың  зейінін  аса қиын жерлеріне жинақтауға,  оқылғанды 
бірнеше  рет  қайталауға,  оқылған  материалға  шапшаңбақылау  жүргізуге,  білімді 
бақылауда ата-аналарды қатыстыруға мүмкіндік береді [2].
 
Қазіргі  таңда  табиғат  және  қоғамдық  ғылымдардың  барлығында  дерлік 
зерттеу  жұмыстары  модельдер  көмегімен  жүргізіледі.  Компьютер  алуан  түрлі 
процестердің  моделдерін  жасақтап  және  онымен  сансыз  эксперименттер  орындау 
арқылы  ғылыми  талдау,  сараптау  және  зерттеулер  жүргізе  алатын  қуатты  құрал 
екендігі  баршаға  мәлім.  Компьютер  арқылы  тірек  мәтіндеріне  аса  көрікті, 
динамикалық  және  интерактивті  келбет  беруге  болады.  Мультимедиялық  тіректе 
барлық ақпарат бір мезгілде пайда болмайды. Ондағы ақпарат мұғалімнің түсіндіруі 
барысында  және  оқушының  жауап  беруі  кезінде  біртіндеп  шыға  бастайды.  Біз  бұл 
мультимедиялық тірек мәтіндерін көп өлшемді етіп жасай аламыз. Гипер сілтемелер 
көмегімен  жаңа  материалды  түсіндіру  барысында  мұғалім  тірекмәтіндерінің  әрбір 
блогын бір оқиға, құбылыс, оқу кезеңі туралы аса толық ақпарат беріп толық ашып  
көрсете алады.
 
Электродинамика  курсының  электростатика,  тұрақты  электр  тогы,  әр  түрлі 
ортадағы  электр  тогы  және  магнит  өрісі  тарауларында  тірек  сигналдарын  қолдану 
арқылы  оқушылардың  білімі  мен  ұғымын  тексеру  мақсатында  жаңа  материалдар  
мәтіндер  түрінде  берілді[3].Аталған  бөлімдер  бойынша  бірнеше  тірек  сигналдары 
жасалып,  сабақтардың  құрылымы  мен  жоспары  эксперименттік  оқуда  сынақтан 
өтті.Оқушылардың  білім  деңгейін  тексеретін  сұрақтар,  қиындық  дәрежесі  әр  түрлі 
есептер,  эксперименттік  және  шығармашылық  зерттеу  тапсырмалары  іріктелді. 
Төменде  электростатика  бөлімінде  іріктелген  тақырыптар  бойынша  тірек 
сигналдарының
ТК-1,2,3,4, өзін-өзі бақылау сұрақтары,өз бетімен шығаруға арналған 
есептер,эксперименттік тапсырмалар берілген.
 
 
ТК-1 
Электродинамика – электромагниттік өрістің сырын ашатын заңдылықтар мен 
қасиеттер туралы ғылым (материяның ерекше түрі) 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

5
 ~ 
 
                             гравитациялық                           
гр
=
 
Өзара әсер             күшті (ядролық) ~10
-12
 см 
                             әлсіз (радиоактив.ыдырау)~10
17
 см 
                             электромагниттік F
эл
»F
гр
 
                             (серпімділік, үйкеліс күштері, жарық 10
-39
 есе) 
 
Бөлшектерсіз электр заряды            электрон - 
болуы мүмкін емес                          протон + 
                                                      нейтрон 0    
 
 
                         эбонитті жүнге       Үйкесе 
      шыныны жібекке            
 
                                    көйлек,  шынжыр,  найзағай, ұршық, 
                                      тоқуға арналған жіп, көшірме құралы 
 
 
ЭЛЕКТР ЗАРЯДЫНЫҢ САҚТАЛУ ЗАҢЫ 
Электрленгенде денелерде жаңа заряд пайда болмайды, тек зарядтар денелер 
арасында қайтадан бөлінеді 
 
q
1
+q
2
+q
3
+...+q
n
=const 
 
ТК-2 
Кулон заңы 
 
Халықаралық бірліктер жүйесінде (ХЖ) 
=
| | ∙ | |
= 9 ∙ 10
∙ м
Кл
 
 
                                1 Кулон (Кл)–ток күші 1 А болғанда, 
                                      өткізгіштің көлденең қимасынан  
               1 секундта өтетін заряд 
                         e=1,6·10
-19
 Кл-Электрон заряды 
                      
=


|
|∙|
|
ε–диэлектрлік өтімділік 
 
 
 
 
 
 
 
Зарядтардың өзара                XVII лезде, бостық арқылы 
әсері қалай беріледі?             ХІХ  (алыстан әсер ету) 
v=300000 км/с 
 
1785 
=
| | ∙ | |
 
Ш.Кулон(фр.) 
-F
12 
F
12 




Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

6
 ~ 
 
                                                                     өріс арқылы 
                                                                      
                              М.Фарадей (гипотеза) 
                              Д.Максвелл (жақыннан әсер ету)  
                              Материяның түрлері 
                              Мүмкін ол да бөлшектерден тұруы 
                              Электр зарядына белгілі бір күшпен әсер етеді 
 
                                                              
                              Электр зарядтары ғана туғызады 
 
ТК-3 
Электр өрісінің кернеулігі 
 
Кернеуліктің иондық сипаттамасы          Нүктелік заряд үшін 
=
     себебі F~q                                       F=qE 
 
⃗ =
9 ∙ 10

| | ∙ | |
 
Кл.з.                                           
⃗ =


|
|∙|
|
 
⃗ =
9 ∙ 10

| |
 
 
 Е                     E
 
 
 
 
Егер заряд бірнешеу болса E=E
1
+E
2
+E
3
+...   суперпозиция принципі 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⃗ + ⃗  
E
q
2
 
 
q
1
 
 
Күш сызықтары 
Күш сызықтары 
+q зарядтан 
басталады 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

7
 ~ 
 
 ТК-4 
Электр өрісінің потенциалы мен кернеуі 
 
Материя↔қозғалыс 
Оның  ортақ өлшемі  энергия  (Е) Дж  электр  өрісі  материяның  бір түрі  болғандықтан 
оның өлшемі - өріс жұмысы 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            A=-q(φ
2

1
)=-qΔφ                        W
эл
=qφ      бірақ жұмыс 
                                                                           A=-(W
2
-W
1

 
 
 
 
Δφ–потенциалдар айырмасы не кернеу (U) 
U=-Δφ→         
=
1В =
Дж
Кл
 
 
 
A=qE·ΔdU    =E·Δd Вольт U>36 
A=q· U 
 
Бұл кернеу мен кернеуліктің  
Байланысы 
 
 
 
 
 
 
 
 
 
1. Электростатикалық өріс
 
 
 
 
 
 
 
A=F·S (бізде d) 
F=q·E 
Δα
 
α

α

Е
 
+
 
=
эл.
 
=
=
 
Өрістің энергетикалық 
сипаттамасы потенциал 
(φ) 
 
h

h


Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

8
 ~ 
 
 
1. Өзін-өзі бақылау сұрақтары
 
1. Электр зарядының сақталу заңын тұжырымдаңдар /формуласы/
 
2.  Диэлектрлік өтімділіктің физикалық мәнін /мағынасын/ түсіндіріңдер
 
3.  Электр  өрісінің  берілген  нүктедегі  потенциалы  деген  не?  Потенциалдар 
айырмасы деген не?
 
4.  Кернеулік  пен  потенциал  арасындағы  байланысты  көрсететін  формуланы 
жазыңдар.
 
5.  Электр өрісі диэлектрикте неге әлсірейді?
 
6.  Батареяға  параллель  және  тізбектеліп  жалғанған  конденсатордың  электр 
заряды мен кернеуі жөнінде не айтуға болады?
 
7.  Өлшемі  бірдей,  іші  қуыс,  темір,  мыс,  қуыс  емес  шарларға  бірдей  заряд 
жинақтауға бола ма?
 
 
2. Өз бетімен шығаруға арналған есептер
 
1.  Қабырғасы  20  см  тең  бүйірлі  үшбұрыш  төбелерінде  q
1
=q
2
=q
3
=1,6·10
-6 
  Кл 
зарядтар  орналасқан.  Осы  зарядтың  біріне  ауадағы  2  зарядтың  әсер  күшін 
табыңдар.
 
2.  Қабырғасы  40  см  квадраттың  үш  төбесінде  бірдей  оң  5·10
-9
  Кл  зарядтар 
орналасқан. Квадраттың төртінші төбесіндегі өрістің кернеулігін табыңдар.
 
3.  Потенциалы  300  В,  радиусы  2  см  шар  бетінен  28  см  қашықтыққа  2·10
-8
  Кл 
зарядты  шексіздіктен  әкелу  үшін  қандай  жұмыс  жасау  керек?  Шар  ауада 
орналасқан.
 
4.  Вакуумдағы 1,5·10
-9
 Кл зарядтың айналасында электр өрісі бар. Потенциалы 
45 және 30 В екі эквипотенциал беттер бір-бірінен қандай қашықтықта?
 
5.  Аралығы  1,5  см  потенциалы  450  В  жазық  конденсатор  астарларының 
арасында зарядталған тозаңның массасы 3·10
-7
 г. Тозаңның заряды қандай?
 
 
3. Эксперименттік тапсырмалар
 
1.  Потенциалдар айырмасын өлшеу.
 
2.  Сыйымдылығы айнымалы конденсатордың электр сыйымдылығын анықтау.
 
3.  Диэлектриктің диэлектрлік өтімділігін өлшеу.
 
 
Инновациялық  әдістер,  соның  ішінде  модульдік  оқыту  технологиясы  және 
дамыта  оқыту  жүйесі,  тірек 
сигналдары,  тірек 
мәтіндері 
оқушылардың 
шығармашылық, ойлау қабілеттерін дамытудағы маңызды бағыттар ретінде қолдану 
тиімді.  Бұл  әдістерді  жүзеге  асыруда  саралап  оқыту  жүйесі,  саралап  оқытудың 
түрлері, саралап оқытуда қолданылатын деңгейлік тапсырмалар, олардың мазмұны 
мен  құрылымы,  деңгейлік  тапсырмалардың  түрлері,  әрбір  деңгей  тапсырмаларына 
қойылатын талаптар туралы мәселелер қарастырылған[5,6]. 
Жалпы  электродинамика  курсының  мазмұны  және  құрылымы  негізінде,  тірек 
сигналдары  мен  саралап  оқыту  тапсырмаларын  пайдаланып  жасалынған  сабақ 
жоспарлары,  деңгейлік  есептер,  эксперименттік  тәжірибелер  және  бақылау 
сұрақтарымен  шектеліп  қоймай,  шығармашылық  тапсырмаларды  орындау  арқылы 
сапалы  білім  беруге  жол  ашады.Сонымен  бірге,  мәтіндер  оқу  уақытын  үнемдейді, 
есте  сақтаудың  беріктілігін  арттырады,  білімдерді  меңгеру  үдерісін  жеңілдетеді. 
Мұның  барлығы  білім  сапасының  артуына  көмектеседі,  өзін  –  өзі  тексеруді  және 
меңгерілген білімді өзара тексеруді жеңілдетеді.
 
Әдебиеттер тізімі 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

9
 ~ 
 
 
1. Бугаев A.И. Методика преподавания физики в средней школе. – М.: Просвещение, 
1981. – 288 с. 
2.  Шаталов  В.Ф.,  Соцветие  талантов.  Часть  1,  М.,  ГУП  ЦРП  «Москва  –  Санкт-
Петербург», 2001 г., с. 48-49.
 
3. Анциферов А.И. Электродинамика и квантовая физика. – М.: Мнемозина, 2002. –
382 с. 
4.  Имашев  Г.И.,  Рахметова  М.  Формирование  основных  понятий  электростатики.- 
Атырау.: АтырГУ им. Х. Досмухамедова, 2005.-93 с.  
5.Имашев  Г.  Инновационные подходы  в  развитии политехнического образования  в 
процессе  обучения  физике  в  средней  школе.  Монография  –  Атырау:    АтГУ  им.  Х. 
Досмухамедова,   2011. - 150 с.  
6.  Имашев  Г.  Инновации  в  политехническом  образовании  //  Вестник  «Наука  и 
техника» Польша,Познань,часть2. 2012.- 172 с.  
 
 
УДК 303.064 
 
Б.О. Маштенов,  Г.Ж. Жангереева, М.С. Темиралиева  
 
Атырауский государственный университет имени Х. Досмухамедова, г. Атырау 
 
РОЛЬ КОМПЬЮТЕРОВ В ФИЗИКЕ 
 
Бұл 
мақалада 
компьютерлік 
модельдеудің 
физикада 
қолдануы 
қарастырылып кейбір мысалдар келтірілген. 
 
In this article represented some examples using computer modeling in physics. 
 
Компьютерное 
моделирование, 
вычислительный 
эксперимент- 
это 
современные  методы  изучения  сложных  объектов  и  систем,  имеющие  свои 
особенности,  преимущества  и  недостатки  по  сравнению  с  другими  методами 
исследования.  Персональный  компьютер  с  соответствующим  программным 
позволяет  за  несколько  секунд  решить  систему  дифференциальных  уравнений, 
построить  график  изучаемой  зависимости, промоделировать  исследуемый  процесс. 
Совершенно  очевидно,  что  студенты  высших  учебных  заведений  должны  иметь 
представления  о  компьютерных  моделях,  численных  методах  изучения  различных 
объектов  познания,  достаточно  свободно  ориентироваться  в  современных 
программных продуктах. 
Важным этапом овладения методами вычислительной математики и физики 
является  самостоятельное  написание  студентами  различных  компьютерных 
программ на алгоритмических языках программирования Delphi, Java, C++.Создавая 
подобные компьютерные модели  «с нуля», работая с исходным кодом программы, 
студент  глубже  понимает  законы  физики  и  конкретные  способы  обработки 
информации, методы программирования. 
С  другой  стороны,  студент  должен  уметь  работать  с  современными 
математическими  пакетами  и  различными  системами  компьютерной  математики.  К 
ним  относится  пакет  MathCAD  –  достаточно  распространенная  система 
автоматического  проектирования  (САПР),  в  которой  объединены  редактор 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

10
 ~ 
 
документов, системный интегратор, центр ресурсов, электронные книги, справочная 
система,  браузер  Интернета.  Пакет  MathCAD  имеет  мощный  математический 
аппарат,  позволяющий  решать  системы    алгебраических  и  дифференциальных 
уравнений, выполнять символьные вычисления, операции с векторами и матрицами, 
писать программы, строить графики и поверхности, и.т.д. Основы работы в MathCAD 
подробно  изложены  в  соответствующей  литературе  и  в  настоящей  работе  не 
рассматриваются. 
Достаточно  пролистать  первое  попавшееся  научное  издание  или  пройтись 
по любой физической лаборатории, чтобы всюду встретить компьютеры. Говорят об 
использовании компьютеров в физике, можно выделить четыре категории: 
1. Численный анализ. 
2.Символьные преобразования. 
3.Моделирование. 
4.Управление в реальном времени. 
В  численном  анализе  вычисленном  предшествует  выяснение  упрощающих 
физических принципов. Например, мы знаем, что решение многих физических задач 
может  быть  сведено  к  решению  системы  линейных  уравнений.  Рассмотрим 
уравнения 
2x+3y = 18, 
x-y = 4. 
Используя  метод  подстановки  и  карандаш  с  бумагой,  легко  найти 
аналитическое  решение  х=6,  у=2.Предположим,  что  нам  надо  решить  систему 
четырех  уравнений.  Мы  в  состоянии  и  на  этот  раз  найти  аналитическое  решение, 
быть  может,  с  помощью  более  сложного  метода.  Если  же  число  переменных 
становится существенно большим, нам приходится прибегать к численным методам 
и компьютеру и находить численное решение. В данном случае компьютер служит 
инструментом  численного  анализа,  при  этом  в  программу  для  компьютера 
закладываются  все  существенные  физические  принципы,  например  сведение 
рассматриваемой  задачи  к  обращению  матрицы.  Поскольку  часто  бывает 
необходимо вычислить многомерны  й  интеграл,  произвести  операции  с  большим 
матрицами  или  решить  сложное  дифференциальное  уравнение,  то  понятное,  что 
это применение компьютера играет в физике важную роль. 
Менее  известным,  но  приобретающим  все  большее  значение  применением 
компьютера  в  теоретической  физике  являются  аналитические  преобразования.  В 
качестве  примера  предположим,  что  мы  хотим  узнать  решение  квадратного 
уравнения  ax
2
+bx+c=0.  Программа  аналитических  преобразований  может  выдать 
решение  в  виде  формулы  x=  (-b±√D)/2a.Кроме  того,  такая  программа  может 
выдать решения и в обычной числовой форме для конкретных значений a, b и c. С 
помощью  типичной  программы  аналитических  преобразований  можно  выполнять 
такие  математические  операций,  как  дифференцирование,  интегрирование, 
решение уравнений и разложение в степеней ряд. 
Моделирование  характеризуется  тем,  что  в  программу  закладываются  все 
основные  законы  модели  с  минимальным  анализом.  В  качестве  примера 
предположим, что каждому ученику в классе из 100 человек выдается по 10 тенге. 
Учительница,  которая  также  начинает  с  10  тенге  в  кармане,  выбирает  случайным 
образом  ученика  и  бросает  монету.Если  выпадает  «решка»,  учительница  дает 
ученику  0,5  тенге;  в  противном  случае  ученик  дает  учительнице  0,5  тенге.  Ни 
учительнице,  ни  ученике  не  разрешается  делать  долги.  После  большого  числа 
обменов спрашивается: «Какова вероятность того, что у ученика имеется n тенге?» 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

11
 ~ 
 
и «Какова вероятность того, что у ученика имеется m тенге?».Одинаковы ли эти две 
вероятности? Один из способов найти ответы на указанные вопросы состоит в том, 
чтобы  провести  эксперимент.Однако  такой  эксперимент  было  бы  затруднительно 
поставить и утомительно выполнять.Хотя данную конкретную задачу можно решить 
точно  аналитическими  методами,  однако  из  всех  задачи  удается  решить  таким 
способом.Можно  поступить  иначе,  а  именно  заложить  правила  игры  в  программу 
для компьютера, промоделировать больше число обменов и вычислить вероятности. 
После  получения  численных  значения  вероятностей  мы,  возможно,  по-новому 
посмотри  на  их  природу  и  их  связь  с  обменом  денег.  Компьютер  можно  также 
использовать для выяснения вопросов типа «Что будет, если…?».Например, как бы 
изменилась вероятности, если бы обмен производился по 1 тенге, а не по 0,5? 
Если  заменить  игроков  другими  объектами  (например,  под  деньгами 
понимать энергию) и слегка изменить правила игры, указанный тип моделирования 
может  найти  применение  в  задачах  магнетизма  и  физики  частиц.  Использование 
компьютеров  для  моделирования  в  течение  25  лет  помогло  нам  открыть  новые 
упрощающие физические принципы. 
При  всем  разнообразности  использования  компьютеров  главной  целью 
расчета  является  обычно  «понимание,  а  не  числа».Вычисления  оказали  глубокое 
влияние на образ наших занятий физикой, на характер важных вопросов в физике и 
на  выбор  нами  физических  систем  для  изучения.  Все  три  способа  использования 
компьютеров  требует  крайней  мере  некоторых  упрощающих  приближений, 
позволяющих  решить  задачу  численно.  Однако,  поскольку  моделирование  требует 
минимального  предварительного  исследования  и  выдвигает  на  первый  план 
исследовательский режим учебы, мы выделяем этот подход. Компьютеры являются 
также важным инструментом в экспериментальной физике. Часто связаны со всеми 
фазами  лабораторного  эксперимента:  от  проектирования  аппаратуры,  управления 
этой  аппаратурой  в  ходе  эксперимента  и  до  сбора  и  анализа  данных.Это 
привлечение  вычислительной  техники  не  только  позволило  экспериментатором, 
которые иначе были бы неосуществимы. Некоторые из упомянутых задач, например 
проектирование  аппаратуры  или  же  анализ  данных,  близки  к  задачам, 
встречающимся в теоретическом расчете. Однако задачи, связанные с управлением 
и  интерактивным  анализом  данных,  качественно  отличаются  и  требует 
программирования в реальном времени и стыковки вычислительного оборудования 
с разнообразным типами установок. 
Численное моделирование в настоящее время становится важным в физике. 
Одной  из  причин  является  то что,  большинство  применяемых  нами  аналитических 
средств,  таких  как  дифференциальное  исчисление,  больше  всего  подходит  для 
исследования  линейных  задач.  Например,  мы  умеем  анализировать  движение 
частиц.  подвешенный  на  пружинке,  решая  уравнение  ее  движения  (второй  закон 
Ньютона)  в  предположении  линейной  возвращающей  силы.  Однако  множество 
природных  процессов  являются  нелинейными,  так  что  малые  изменения  в  одной 
переменной  могут  привести  скорее  к  большим, чем  к  малым  изменениям  в  другой 
переменной.  Поскольку  нелинейные  задачи  удается  решать  аналитическими 
методами только в отдельных случаях, компьютер дает нам новый инструмент для 
исследования  нелинейных  явлений.  Другая  причина  важности  численного 
моделирования  связана  с  тем,  что  мы  интересуемся  системами  со  многими 
степенями  свободы  или  многими  переменными.  Примером  такой  задачи  является 
случай с обменом денег, описанной выше. 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

12
 ~ 
 
Развитие  компьютерной  технологии  приводит  в  наше  время  к  новому 
взгляду на физические системы. Постановка вопроса: «Как можно сформулировать 
задачу на компьютере?» уже привела к новым формулировкам физических законов 
и  осознанию  того,  что  сколь  практично,  столь  и  естественно  выражать  научные 
законы в виде правил для компьютера, а не языке дифференциальных уравнений. 
Сейчас этот новый взгляд на физические процессы приводит некоторых физиков к 
тому,  чтобы  рассматривать  компьютер  как  некую  физическую  систему  и 
разрабатывать  новейшие  архитектуры  компьютеров,  которые  могут  более 
эффективно моделировать природные физические системы. 
 
Т а б л и ц а 1- Аналогии между вычислительной и лабораторным экспериментами 
 
Лабораторный эксперимент 
Вычислительный эксперимент 
Образец 
Модель 
Физический прибор 
Программа для компьютеров 
Калибровка 
Тестирование программы 
Измерение 
Расчет 
Анализ данных 
Анализ данных 
 
Иногда 
численное 
моделирование 
называют 
вычислительным 
экспериментом,  поскольку  оно  имеет  очень  много  общего  с  лабораторным 
экспериментам.  Некоторые  аналогии  показаны    в  таблице  1.Отправным  пунктом 
численного  моделирования  является  разработка  идеализированной  модели 
рассматриваемой  физической  системы.  Затем  нам  необходимо  определить 
процедуру  или  алгоритм  для  реализации  данной  модели  на  компьютере. 
Компьютерная  программа  моделирует 
физическую 
систему 
и 
описывает 
вычислительный  эксперимент.  Такой  вычислительный  эксперимент  служит  мостом 
между  лабораторным  экспериментами  и  теоретическим  расчетами.  Например,  мы 
можем  получить  по  существу  точные  результаты,  моделируя  идеализированную 
модель,  у  которой  нет  никакого  лабораторного  аналога.  Сравнение  результатов 
моделирования  с  соответствующими  теоретическими  расчетами  служит  стимулом 
развития  вычислительных  методов.  С  другой  стороны,  можно  проводить 
моделирование  на  реалистичной  модели  с  тем,  чтобы  осуществить  более  прямое 
сравнение с лабораторным экспериментами. 
Численное моделирование, как и лабораторные эксперименты, не заменяет 
размышление,  а  является  инструментом,  который  можно  использовать  для 
постижения сложных явлений. Но цель всех наших исследований фундаментальных 
явлений  состоит  в  поиске  таких  объяснений  физических  явлений,  которые  можно 
записать  на  обратной  стороне  конверта  или  которые  можно  представить  на 
пальцах!   
 
Список литературы 
 
1 Майер Р.В. Решение физических задач с помощью пакета MathCAD / Р.В Майер.-
Глазов: ГГПИ, 2006. - 37 с. 
2  Поршнев  С.В.  Компьютерное  моделирование  физических  процессов  с 
использованием  пакета  MathCAD:  учебное  пособие  /  С.В.Поршнев.  –  М.:  Горячая 
линия- Телеком, 2002. - 252 с. 

Х.Досмұхамедов атындағы АтырМУ хабаршысы 
 № 2 (25), 2012 

13
 ~ 
 
УДК 004 (07) 



Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   17


©emirsaba.org 2019
әкімшілігінің қараңыз

    Басты бет