E
i
> 0), если индукционный ток течёт в положи-
тельном направлении. В этом случае направление сторонних сил, возникающих в контуре при
изменении магнитного потока через него, совпадает с положительным направлением обхода
контура.
Наоборот, ЭДС индукции считается отрицательной (
E
i
< 0), если индукционный ток течёт в
отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль
отрицательного направления обхода контура.
Итак, пусть контур находится в магнитном поле B. Фиксируем направление положительного
обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положитель-
ный обход совершается против часовой стрелки. Тогда магнитный поток положителен: Φ > 0.
Предположим, далее, что магнитный поток увеличивается (∆Φ/∆t > 0). Согласно правилу
Ленца индукционный ток потечёт в отрицательном направлении (рис.
91
).
I (течёт в отрицательном направлении)
B (магнитный поток возрастает)
Положительный обход
Рис. 91. Магнитный поток возрастает ⇒
E
i
< 0
Стало быть, в данном случае имеем
E
i
< 0. Знак ЭДС индукции оказался противоположен
знаку скорости изменения магнитного потока. Проверим это в другой ситуации.
102
А именно, предположим теперь, что магнитный поток убывает (∆Φ/∆t < 0). По правилу
Ленца индукционный ток потечёт в положительном направлении. Стало быть,
E
i
> 0 (рис.
92
).
I (течёт в положительном направлении)
B (магнитный поток убывает)
Положительный обход
Рис. 92. Магнитный поток возрастает ⇒
E
i
> 0
Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца
всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения
магнитного потока:
E
i
= −
∆Φ
∆t
= − ˙
Φ.
(80)
Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.
19.7
Вихревое электрическое поле
Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же меха-
низм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение
свободных зарядов, какова природа этих сторонних сил?
Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундамен-
тальное свойство природы: меняющееся во времени магнитное поле порождает поле электри-
ческое. Именно это электрическое поле и действует на свободные заряды, вызывая индукцион-
ный ток.
Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было
названо вихревым электрическим полем. Линии вихревого электрического поля идут вокруг
линий магнитного поля и направлены следующим образом.
Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индук-
ционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с
конца вектора B. Значит, туда же направлена и сила, действующая со стороны вихревого элек-
трического поля на положительные свободные заряды контура; значит, именно туда направлен
вектор напряжённости вихревого электрического поля.
E
B (увеличивается)
Рис. 93. Вихревое электрическое поле при увеличении магнитного поля
103
Итак, линии напряжённости вихревого электрического поля направлены в данном случае
по часовой стрелке (смотрим с конца вектора B, (рис.
93
).
Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического
поля направлены против часовой стрелки (рис.
94
).
E
B (уменьшается)
Рис. 94. Вихревое электрическое поле при уменьшении магнитного поля
Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит
именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный
эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур
или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный
ток.
Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам
электрических полей: электростатического поля и стационарного поля зарядов, образующих
постоянный ток.
1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного
полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру
не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же
время, как мы знаем, электростатическое и стационарное поля являются потенциальными.
Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля
по перемещению единичного положительного заряда вокруг контура.
Пусть, например, контур является кольцом радиуса r и пронизывается однородным пере-
менным магнитным полем. Тогда напряжённость E вихревого электрического поля одинакова
во всех точках кольца. Работа A силы F , с которой вихревое поле действует на заряд q, равна:
A = F · 2πr = qE · 2πr.
Следовательно, для ЭДС индукции получаем:
E
i
=
A
q
= 2πrE.
19.8
ЭДС индукции в движущемся проводнике
Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС
индукции. Однако причиной теперь служит не вихревое электрическое поле (оно вообще не
появляется — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды
проводника.
104
Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости
расположены параллельные рельсы, расстояние между которыми равно l. Рельсы находятся в
вертикальном однородном магнитном поле B. По рельсам движется тонкий проводящий стер-
жень P N со скоростью v; он всё время остаётся перпендикулярным рельсам (рис.
95
).
l
M
K
v
F
q
B
v∆t
P
P
N
N
Рис. 95. Движение проводника в магнитном поле
Возьмём внутри стержня положительный свободный заряд q. Вследствие движения этого
заряда вместе со стержнем со скоростью v на заряд будет действовать сила Лоренца:
F = qvB.
Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не
забывайте правило часовой стрелки или левой руки!).
Сила Лоренца F играет в данном случае роль сторонней силы: она приводит в движение
свободные заряды стержня. При перемещении заряда q от точки N к точке P наша сторонняя
сила совершит работу:
A = F l = qvBl.
(Длину стержня мы также считаем равной l.) Стало быть, ЭДС индукции в стержне окажется
равной:
E
i
=
A
q
= vBl.
(81)
Таким образом, стержень P N аналогичен источнику тока с положительной клеммой P и
отрицательной клеммой N . Внутри стержня за счёт действия сторонней силы Лоренца проис-
ходит разделение зарядов: положительные заряды двигаются к точке P , отрицательные — к
точке N .
Допустим сначала, что рельсы не проводят ток. Тогда движение зарядов в стержне постепен-
но прекратится. Ведь по мере накопления положительных зарядов на торце P и отрицательных
зарядов на торце N будет возрастать кулоновская сила, с которой положительный свободный
заряд q отталкивается от P и притягивается к N — и в какой-то момент эта кулоновская сила
уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная
ЭДС индукции (
81
).
Теперь предположим, что рельсы и перемычка KM являются проводящими. Тогда в цепи
возникнет индукционный ток; он пойдёт в направлении P → K → M → N (от «плюса ис-
точника» P к «минусу» N ). Предположим, что сопротивление стержня равно r (это аналог
внутреннего сопротивления источника тока), а сопротивление участка P KM N равно R (сопро-
тивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной
цепи:
I =
E
i
R + r
=
vBl
R + r
.
105
Замечательно, что выражение (
81
) для ЭДС индукции можно получить также с помощью
закона Фарадея. Сделаем это.
За время ∆t наш стержень P N проходит путь v∆t и занимает положение P N (рис.
95
).
Площадь контура возрастает на величину площади прямоугольника P P N N :
∆S = S
P P N N
= lv∆t.
Магнитный поток через контур увеличивается. Приращение магнитного потока равно:
∆Φ = B∆S = Blv∆t.
Скорость изменения магнитного потока положительна и равна ЭДС индукции:
E
i
=
∆Φ
∆t
= Blv.
Мы получили тот же самый результат, что и в (
81
).
Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно,
раз ток течёт в направлении P → K → M → N , то его магнитное поле направлено противо-
положно внешнему полю B и, стало быть, препятствует возрастанию магнитного потока через
контур.
На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле,
можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с
помощью закона Фарадея. Результаты будут получаться одинаковые.
106
20
Самоиндукция
Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что элек-
трический ток в контуре, меняющийся со временем, определённым образом воздействует сам
на себя.
Ситуация 1. Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой
стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (рис.
96
).
I (увеличивается)
E
вихр
B (увеличивается)
Рис. 96. Вихревое поле препятствует увеличению тока
Таким образом, наш контур оказывается в переменном магнитном поле своего собственно-
го тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает
вихревое электрическое поле, линии которого направлены по часовой стрелке в соответствии с
правилом Ленца.
Как видим, вихревое электрическое поле направлено против тока, препятствуя его возраста-
нию; оно как бы «тормозит» ток. Поэтому при замыкании любой цепи ток устанавливается не
мгновенно — требуется некоторое время, чтобы преодолеть тормозящее действие возникающего
вихревого электрического поля.
Ситуация 2. Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле
тока также убывает и порождает вихревое электрическое поле, направленное против часовой
стрелки (рис.
97
).
I (уменьшается)
E
вихр
B (уменьшается)
Рис. 97. Вихревое поле поддерживает убывающий ток
Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддержи-
вает ток, препятствуя его убыванию.
Как мы знаем, работа вихревого электрического поля по перемещению единичного положи-
тельного заряда вокруг контура — это ЭДС индукции. Поэтому мы можем дать такое опреде-
ление.
Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает
ЭДС индукции в этом же самом контуре.
При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрица-
тельную работу, тормозя свободные заряды. Стало быть, ЭДС индукции в этом случае отри-
цательна.
107
При убывании силы тока (в ситуации 2) вихревое электрическое поле совершает положи-
тельную работу, «подталкивая» свободные заряды и препятствуя убыванию тока. ЭДС индук-
ции в этом случае также положительна
43
.
20.1
Индуктивность
Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнит-
ного поля: Φ ∼ B. Кроме того, опыт показывает, что величина индукции магнитного поля
контура с током пропорциональна силе тока: B ∼ I. Стало быть, магнитный поток через по-
верхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален
силе тока: Φ ∼ I.
Коэффициент пропорциональности обозначается L и называется индуктивностью контура:
Φ = LI.
(82)
Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от
магнитных свойств среды, в которую помещён контур
44
. Единицей измерения индуктивности
служит генри (Гн).
Допустим, что форма контура, его размеры и магнитные свойства среды остаются посто-
янными (например, наш контур — это катушка, в которую не вводится сердечник); изменение
магнитного потока через контур вызвано только изменением силы тока. Тогда ∆Φ = L∆I, и
закон Фарадея
E
i
= −∆Φ/∆t приобретает вид:
E
i
= −L
∆I
∆t
= −L ˙
I.
(83)
Благодаря знаку «минус» в (
83
) ЭДС индукции оказывается отрицательной при возрастании
тока и положительной при убывании тока, что мы и видели выше.
Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размы-
кании цепи.
В первом опыте к батарейке подключены параллельно две лампочки, причём вторая —
последовательно с катушкой достаточно большой индуктивности L (рис.
98
). Ключ вначале
разомкнут.
1
L
2
Рис. 98. Самоиндукция при замыкании цепи
При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 — постепенно. Дело в том,
что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому макси-
мальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное
время после вспыхивания первой лампочки.
43
Нетрудно убедиться в том, что знак ЭДС индукции, определённый таким образом, согласуется с правилом
выбора знака для ЭДС индукции, сформулированным в предыдущем разделе.
44
Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от
диэлектрической проницаемости среды между обкладками конденсатора.
108
Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение про-
стое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в
катушке, и потому батарейке придётся совершить б´
ольшую работу по преодолению вихревого
поля, тормозящего заряженные частицы.
Во втором опыте к батарейке подключены параллельно катушка и лампочка рис.
99
). Со-
противление катушки много меньше сопротивления лампочки.
L
Рис. 99. Самоиндукция при размыкании цепи
Ключ вначале замкнут. Лампочка не горит — напряжение на ней близко к нулю из-за мало-
сти сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через
катушку.
При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает
резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток
(ведь ЭДС индукции, как видно из (
83
), пропорциональна скорости изменения тока).
Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое
электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля че-
рез лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой
индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и
лампочка вовсе перегорит.
Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект яв-
ляется серьёзной проблемой. Так как при размыкании цепи ток начинает уменьшаться очень
быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные на-
пряжения и достигать опасно больших величин. Поэтому в агрегатах, потребляющих большой
ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные
выключатели на электростанциях), препятствующие моментальному размыканию цепи.
20.2
Электромеханическая аналогия
Нетрудно заметить определённую аналогию между индуктивностью L в электродинамике и
массой m в механике.
1. Чтобы разогнать тело до заданной скорости, требуется некоторое время — мгновенно
изменить скорость тела не получается. При неизменной силе, приложенной к телу, это
время тем больше, чем больше масса m тела.
Чтобы ток в катушке достиг своего максимального значения, требуется некоторое время;
мгновенно ток не устанавливается. Время установления тока тем больше, чем больше
индуктивность L катушки.
2. Если тело налетает на неподвижную стену, то скорость тела уменьшается очень быстро.
Стена принимает на себя удар, и его разрушительное действие тем сильнее, чем больше
масса тела.
109
При размыкании цепи с катушкой ток уменьшается очень быстро. Цепь принимает на се-
бя «удар» в виде вихревого электрического поля, порождаемого убывающим магнитным
полем тока, и этот «удар» тем сильнее, чем больше индуктивность катушки. ЭДС индук-
ции может достичь столь больших величин, что пробой воздушного промежутка выведет
из строя оборудование.
На самом деле эти электромеханические аналогии простираются довольно далеко; они каса-
ются не только индуктивности и массы, но и других величин, и оказываются весьма полезными
на практике. Мы ещё поговорим об этом в листке про электромагнитные колебания.
20.3
Энергия магнитного поля
Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхи-
вает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в
лампочке выделяется энергия. Но откуда эта энергия берётся?
Берётся она, ясное дело, из катушки — больше неоткуда. Но что за энергия была запасена
в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромехани-
ческую аналогию между индуктивностью и массой.
Чтобы разогнать тело массы m из состояния покоя до скорости v, внешняя сила долж-
на совершить работу A. Тело приобретает кинетическую энергию, которая равна затраченной
работе: K = A = mv
2
/2.
Чтобы после замыкания цепи ток в катушке индуктивности L достиг величины I, источник
тока должен совершить работу по преодолению вихревого электрического поля, направленного
против тока. Работа источника идёт на создание тока и превращается в энергию магнитного
поля созданного тока. Эта энергия запасается в катушке; именно эта энергия и выделяется
потом в лампочке после размыкания ключа (во втором опыте).
Индуктивность L служит аналогом массы m; сила тока I является очевидным аналогом
скорости v. Поэтому естественно предположить, что для энергии магнитного поля катушки
может иметь место формула, аналогичная выражению для кинетической энергии:
W =
LI
2
2
(84)
(тем более, что правая часть данной формулы имеет размерность энергии — проверьте!).
Формула (
84
) действительно оказывается справедливой. Уметь её выводить пока не обяза-
тельно, но если вы знаете, что такое интеграл, то вам не составит труда понять следующие
рассуждения.
Пусть в данный момент сила тока через катушку равна I. Возьмём малый промежуток
времени dt. В течение этого промежутка приращение силы тока равно dI; величина dt считается
настолько малой, что dI много меньше, чем I.
За время dt по цепи проходит заряд dq = Idt. Вихревое электрическое поле совершает при
этом отрицательную работу:
dA
вихр
=
E
i
dq =
E
i
Idt = −L
dI
dt
Idt = −LIdI.
Источник тока совершает такую же по модулю положительную работу dA (сопротивлением
катушки, напомним, мы пренебрегаем, так что вся работа источника совершается против вих-
ревого поля):
dA = −dA
вихр
= LIdI.
110
Интегрируя это от нуля до I, найдем работу источника A, которая затрачивается на создание
тока I:
A =
I
0
LIdI =
LI
2
2
.
Эта работа превращается в энергию W магнитного поля созданного тока, и мы приходим к
формуле (
84
).
111
21
Электромагнитные колебания
Электромагнитные колебания — это периодические изменения заряда, силы тока и напряже-
ния, происходящие в электрической цепи; кроме того, это периодические изменения напряжён-
ности электрического поля и индукции магнитного поля, возникающие и распространяющиеся
в окружающем пространстве.
Знакомство с электромагнитными колебаниями мы начнём с рассмотрения процессов, про-
исходящих в колебательном контуре.
21.1
Колебательный контур
Колебательный контур — это замкнутый контур, образованный последовательно соединён-
ными конденсатором и катушкой. Колебательный контур является простейшей системой, в
которой могут происходить электромагнитные колебания.
Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнутся свободные
электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в
катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без
какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.
Период колебаний в контуре обозначим, как всегда, через T . Сопротивление катушки будем
считать равным нулю.
Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности
будем проводить аналогию с колебаниями горизонтального пружинного маятника.
Начальный момент: t = 0. Заряд конденсатора равен q
0
, ток через катушку отсутствует
(рис.
100
). Конденсатор сейчас начнёт разряжаться.
+q
0
−q
0
Рис. 100. t = 0
Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как
только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая
возрастанию тока.
Аналогия. Маятник оттянут вправо на величину x
0
и в начальный момент отпущен. Началь-
ная скорость маятника равна нулю.
Первая четверть периода: 0 < t < T /4. Конденсатор разряжается, его заряд в данный
момент равен q. Ток I через катушку нарастает (рис.
101
).
+q
−q
I
Рис. 101. 0 < t < T /4
112
Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятству-
ет нарастанию тока и направлено против тока.
Аналогия. Маятник движется влево к положению равновесия; скорость v маятника посте-
пенно увеличивается. Деформация пружины x (она же — координата маятника) уменьшается.
Конец первой четверти: t = T /4. Конденсатор полностью разрядился. Сила тока достигла
максимального значения I
0
(рис.
102
). Сейчас начнётся перезарядка конденсатора.
I
0
Рис. 102. t = T /4
Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт
Достарыңызбен бөлісу: |