Секущейбудем называть прямую, которая пересекает некоторую геометрическую фигуру: треугольник, окружность, угол и т.п. Иногда удобно брать не только точки пересечения фигуры и секущей, но и некоторые дополнительные точки: например, точку пересечения прямой, на которой лежит сторона треугольника и секущей.
Рассмотрим секущую треугольника. К ней относится одна замечательная теорема: теорема Менелая, которая связывает отношения длин отрезков, на которые секущая делит стороны треугольника.
Теорема Менелая. Пусть пересечен прямой, не параллельной стороне АC и пересекающей две его стороны АB и ВС соответственно в точках C1 и А1, а прямую АC в точке B1 тогда (1)
Справедлива также обратная теорема Менелая.
Теорема, обратная теореме Менелая.В треугольнике АВС точки А1, В1, С1 принадлежат прямым ВС, АС, АВ соответственно, тогда если , то точки А1, В1, С1 лежат на одной прямой.
Упражнение 1.Докажите теорему Менелая. (Указание: опустите на секущую перпендикуляры из вершин треугольника и рассмотрите пары получившихся подобных прямоугольных треугольников. Заменив в (1) отношения гипотенуз на отношения соответствующих катетов и выполнив сокращения, получите нужный результат.)
Упражнение 2.Докажите теорему, обратную теореме Менелая. (Указание: воспользуйтесь методом «от противного». Предположите, что, например, точка A1 не лежит на секущей. Тогда секущая пересечет сторону BC в некоторой точке A2, для которой выполнена прямая теорема Менелая. Далее самостоятельно получите противоречие.)