Упражнение 20.Докажите эту формулу. (Указание: покажите, что точки CA1JB1 являются вершинами квадрата, сторона которого равна радиусу вписанной окружности и примените формулы, выражающие отрезки касательных через стороны треугольника.)
Для радиуса вписанной окружности равнобедренного треугольника можно получить простое выражение через основание и угол при нем (смотри чертеж):
.
Окружность, проходящая через две вершины треугольника
Чаще всего в геометрических задачах встречается конфигурация, в которой окружность проходит только через две вершины треугольника, при этом вторично пересекая две его стороны. В такой конструкции появляются два подобных треугольника ABC и AML, у которых соответственные стороны ML и BC – не параллельны.
Рассмотрим некоторые примеры, в которых появляется такая конструкция.
Пример 1. Окружность, проходящая через две вершины и основания двух высот треугольника (В этом случае сторона AC будет диаметром окружности).
В этой конфигурации коэффициент подобия треугольников равен косинусу угла при третьей вершине: .
У пражнение 21.Докажите сформулированное выше утверждение. (Указание: выразите отрезки AM и AL через стороны треугольника и угол A.)
Пример 2.Пусть одна из сторон треугольника (например, BC) является диаметром окружности, а L и M точки пересечения окружности с двумя другими сторонами. Тогда из этих точек диаметр окружности виден под прямым углом. Нетрудно увидеть, что отрезки BM и CL являются высотами треугольника.
Упражнение 22.Окружность, диаметром которой служит одна из сторон треугольника, пересекает другую сторону в точке, являющейся ее серединой. Докажите, что данный треугольник – равнобедренный.