Задание
40.
Произведение
векторов
a =
(
α
1
;
α
2
;
α
3
)
и
b
=
(
β
1
;
β
2
;
β
3
)
определено
на
R
3
заданным
правилом
.
Является
ли
это
правило
скалярным
произведением
на
R
3
?
1.
α
1
β
1
+
α
2
β
1
+
α
1
β
2
+
α
2
β
2
+
α
3
β
3
.
2.
α
1
β
1
–
α
2
β
1
–
α
1
β
2
+
α
2
β
2
+
α
3
β
3
.
3.
α
1
β
1
+
α
3
β
1
+
α
2
β
2
+
α
1
β
3
+
α
3
β
3
.
4. –
α
1
β
1
–
α
2
β
2
–
α
3
β
3
+
α
1
β
2
+
α
2
β
1
.
5. 4
α
1
β
1
+
α
2
β
2
–
α
3
β
2
–
α
2
β
3
+
α
3
β
3
.
6.
α
1
β
1
+
α
3
β
1
+
α
2
β
2
+
α
1
β
3
+
α
3
β
3
.
48
7. 2
α
1
β
1
+
α
1
β
2
+
α
2
β
1
+
α
2
β
2
+
α
3
β
3
.
8.
α
1
β
1
–
α
1
β
2
+
α
2
β
2
+
α
3
β
3
.
9. –2
α
1
β
1
+
α
2
β
1
+
α
1
β
2
–
α
2
β
2
+
α
3
β
3
.
10.
α
1
β
2
–
α
3
β
1
+
α
2
β
2
–
α
1
β
3
+
α
2
β
1
.
11.
α
1
β
1
–
α
3
β
1
–
α
2
β
2
–
α
1
β
3
+
α
3
β
3
.
12. 2
α
1
β
1
+
α
3
β
1
–2
α
2
β
2
+
α
1
β
3
–
α
3
β
3
.
13. 3
α
1
β
1
+
α
2
β
2
–
α
1
β
3
–
α
3
β
1
+
α
3
β
3
.
14. –
α
1
β
1
–
α
2
β
1
–
α
1
β
2
–
α
2
β
2
+
α
3
β
3
.
15.
α
1
β
1
–2
α
1
β
2
–
α
2
β
1
+5
α
2
β
2
+
α
3
β
3
.
16.
α
1
β
1
–
α
3
β
1
+
α
2
β
2
–
α
1
β
3
+
α
3
β
3
.
17. –
α
1
β
1
–
α
2
β
2
–
α
1
β
2
+
α
2
β
1
+
α
3
β
3
.
18. 4
α
1
β
1
+2
α
2
β
2
+
α
3
β
2
+
α
2
β
3
+
α
3
β
3
.
19.
2
1
α
1
β
1
+
α
1
β
3
+
α
3
β
1
+
α
2
β
2
+4
α
3
β
3
.
20. 2
α
1
β
1
–
α
1
β
2
–
α
2
β
1
+2
α
2
β
2
+
α
3
β
3
.
21. 3
α
1
β
1
+
α
1
β
2
+
α
2
β
1
+3
α
3
β
3
.
22.
α
1
β
2
+
α
2
β
1
+
α
1
β
3
+
α
3
β
1
.
23.
α
1
β
1
–
α
3
β
1
+
α
2
β
2
–
α
1
β
3
+2
α
3
β
3
.
24.
α
1
β
1
–
α
2
β
2
–
α
3
β
1
–
α
1
β
3
+2
α
3
β
3
.
25. 2
α
1
β
1
+2
α
2
β
2
–
α
1
β
2
–
α
2
β
1
+
α
3
β
3
.
26. 5
α
1
β
1
+
α
2
β
2
–
α
3
β
2
–
α
2
β
3
+4
α
3
β
3
.
27. 3
α
1
β
1
–
α
1
β
2
–
α
2
β
1
–
α
2
β
2
+
α
3
β
3
.
28.
2
1
α
1
β
1
+
α
2
β
2
+
α
1
β
2
+
α
2
β
1
+
2
1
α
3
β
3
.
29. 8
α
1
β
1
+13
α
2
β
2
–6
α
3
β
3
.
30. 3
α
1
β
1
–2
α
1
β
2
–2
α
2
β
1
+3
α
3
β
3
.
Задание
41.
Построить
ортогональный
базис
подпространства
L
(
а
1
,
а
2
,
а
3
).
1.
a
1
=
(1; 0; 0; 0),
a
2
=
(1; 1; 0; 0),
a
3
=
(1; 1; 1; 0).
2.
a
1
=
(1; 1; 0; 0),
a
2
=
(1; 1; 1; 0),
a
3
=
(1; 1; 1; 1).
3.
a
1
=
(1; 1; 1; 1),
a
2
=
(1; 1; 1; –1),
a
3
=
(1; 1; –1;–1).
4.
a
1
=
(1; 1; 1; 1),
a
2
=
(1; –1; 1;–1),
a
3
=
(1; 1; –1; 1).
5.
a
1
=
(1; 1; 1; 1),
a
2
=
(1;–1;–1;–1),
a
3
=
(–1;–1;–1;1).
6.
a
1
=
(1; 0; 1; 0),
a
2
=
(1; 1; 1; 0),
a
3
=
(1; 0; 1; 1).
7.
a
1
=
(1; 1; 1; 0),
a
2
=
(1; 1; 0; 1),
a
3
=
(1; 0; 1; 1).
8.
a
1
=
(1; –1; 1; –1),
a
2
=
(–1; 1; 1; –1),
a
3
=
(1; 1; 1; 1).
9.
a
1
=
(1; 0; 0; 1),
a
2
=
(0; 1; 1; 1),
a
3
=
(0; 0; 0; 1).
10.
a
1
=
(1; –1; 1; 1),
a
2
=
(1; 1; –1; 1),
a
3
=
(1; 1; 1; –1).
11.
a
1
=
(0; 0; 1; 1),
a
2
=
(0; 1; 1; 0),
a
3
=
(1; 1; 0; 0).
12.
a
1
=
(0; 0; 1; –1),
a
2
=
(0; 1; –1; 0),
a
3
=
(1; –1; 0; 0).
13.
a
1
=
(0; 1; 1; 1),
a
2
=
(0; 0; 1; 1),
a
3
=
(0; 0; 0; 1).
14.
a
1
=
(1; 1; –1; 1),
a
2
=
(1; 1; 1; –1),
a
3
=
(–1; 1; 1; 1).
49
15.
a
1
=
(1; 2; –2;–1),
a
2
=
(–1; 0; 0;–1),
a
3
=
(0; –1; 1; 0).
16.
a
1
=
(1; 2; 3; 4),
a
2
=
(0; 1; –1; 0),
a
3
=
(0; –1; 2;–1).
17.
a
1
=
(1; 0; 1; 1),
a
2
=
(0; 1; 1; 1),
a
3
=
(1; 1; 1; 0).
18.
a
1
=
(1;–1;–1;–1),
a
2
=
(1; 1;–1; –1),
a
3
=
(1; 1; 1; –1).
19.
a
1
=
(–1; 1;–1; 1),
a
2
=
(1; –1; 1; 0),
a
3
=
(1; –1; 0; 0).
20.
a
1
=
(2; 2; –2;–2),
a
2
=
(1; 2; 2; 4),
a
3
=
(1; 2; 2; 1).
21.
a
1
=
(–2; 0;–2; 1),
a
2
=
(1; 1; 1; 1),
a
3
=
(0; 5; 1; 2).
22.
a
1
=
(2; 3; 0; 3),
a
2
=
(1; –1; 1; 1),
a
3
=
(3; 2; 2; –4).
23.
a
1
=
(1; 1; 1; 1),
a
2
=
(–1; 1; 0; 0),
a
3
=
(0; 1; 0; –1).
24.
a
1
=
(–1;–1;–1;–1),
a
2
=
(1; 1; 1; 0),
a
3
=
(0; 0; 2; 3).
25.
a
1
=
(1; –1; –1; 1),
a
2
=
(1;–1; –1; –1),
a
3
=
(–1;–1;–1; –1).
26.
a
1
=
(1; 0; 1; 0),
a
2
=
(1; 1; 0; 1),
a
3
=
(0; 1; 1; 0).
27.
a
1
=
(1; 2; 3; 4),
a
2
=
(0; 1; –1; 0),
a
3
=
(0; –1; 2; –1).
28.
a
1
=
(1; 1; 1; –1),
a
2
=
(1;–1; –1; 1),
a
3
=
(1; 1; 0; 0).
29.
a
1
=
(1; 1; –1; 1),
a
2
=
(1;–1; –1; 1),
a
3
=
(1;–1;–1;–1).
30.
a
1
=
(1; –1; 1; 1),
a
2
=
(1; 1; –1; 1),
a
3
=
(1; 1; 1; –1).
Задание
42.
В
евклидовом
пространстве
R
4
найти
ортогональную
проекцию
и
ортогональную
составляющую
вектора
х
на
подпространство
U
=
L
(
a
1
,
a
2
,
a
3
).
1.
a
1
=
(2; 3; 4; 0),
a
2
=
(1; –1; 2; 0),
a
3
=
(5; 0; 3; 0),
x
=
(4; 2; 3; –7).
2.
a
1
=
(1; 1; 1; 1),
a
2
=
(6; 6; 3; 1),
a
3
=
(1; 1; –1; –4),
x
=
(3; –1; 3; 4).
3.
a
1
=
(5; 5; 5; 1),
a
2
=
(–2; –2; 6; 2),
a
3
=
(6; 6; 0; –4),
x
=
(11; 3; 3; –3).
4.
a
1
=
(3; 1; 1; 3),
a
2
=
(2; 1; 1; 2),
a
3
=
(6; 2; 0; 6),
x
=
(3; 2; 0; 9).
5.
a
1
=
(1; –3; –3; 1),
a
2
=
(3; –3; –3; –1),
a
3
=
(3; 1; 1; 2),
x
=
(7; –2; –8; 2).
6.
a
1
=
(2; 3; 2; 1),
a
2
=
(2; 1; 2; 1),
a
3
=
(3; 5; 3; –1),
x
=
(–6; –1; 8; 3).
7.
a
1
=
(3; 4; 4; –2),
a
2
=
(2; 1; 5; –2),
a
3
=
(–2; 3; –3; –4),
x
=
(5; 1; 17; 6).
8.
a
1
=
(2; 1; 1; 2),
a
2
=
(1; 5; 1; 5),
a
3
=
(1; 5; 4; 2),
x
=
(7; 14; 6; 3).
50
9.
a
1
=
(3; 2; 2; 5),
a
2
=
(1; 4; 4; 5),
a
3
=
(–2; –1; –1; 3),
x
=
(0; –1; –5; 3).
10.
a
1
=
(2; 3; 4; –5),
a
2
=
(–1; 2; –1; –2),
a
3
=
(0; 4; 3; –7),
x
=
(8; –1; 10; –5).
11.
a
1
=
(2; 1; 1; 2),
a
2
=
(4; 2; 2; 4),
a
3
=
(–1; 3; 2; –2),
x
=
(–3; 8; –1; 4).
12.
a
1
=
(2; –2; 3; –3),
a
2
=
(1; 2; 3; –6),
a
3
=
(2; –3; 1; 0),
x
=
(4; 7; 10; –13).
13.
a
1
=
(0; 1; 2; –2),
a
2
=
(0; 4; –3; 1),
a
3
=
(0; 8; 2; –3),
x
=
(6; 2; –5; 4).
14.
a
1
=
(2; 3; 4; –3),
a
2
=
(1; –3; 2; –6),
a
3
=
(4; 1; 1; –4),
x
=
(3; 2; 10; 1).
15.
a
1
=
(3; 2; –2; 1),
a
2
=
(–1; –1; 1; 2),
a
3
=
(4; 3; –3; 1),
x
=
(5; 7; 1; 6).
16.
a
1
=
(2; 10; 5; 1),
a
2
=
(1; 7; 2; –1),
a
3
=
(1; 5; 4; –1),
x
=
(–6; 13; 4; 2).
17.
a
1
=
(2; 3; 1; –3),
a
2
=
(2; –1; 1; 1),
a
3
=
(5; –4; 3; 5),
x
=
(4; 3; –4; –8).
18.
a
1
=
(2; –4; 3; 2),
a
2
=
(1; 3; –3; –1),
a
3
=
(–1; –2; 2; 1),
x
=
(9; 3; 7; –3).
19.
a
1
=
(–4; 4; 3; 1),
a
2
=
(1; –1; 2; 1),
a
3
=
(–3; 3; 3; 2),
x
=
(2; –2; 2; 5).
20.
a
1
=
(2; 1; 1; 2),
a
2
=
(3; 0; 6; –2),
a
3
=
(–1; –3; 7; 0),
x
=
(2; 0; 18; 2).
21.
a
1
=
(–2; 0; –2; 1),
a
2
=
(1; 1; 1; 1),
a
3
=
(0; 5; 1; 2),
x
=
(–11; 5; 11; 9).
22.
a
1
=
(2; 3; 0; 3),
a
2
=
(1; –1; 1; 1),
a
3
=
(3; 2; 2; –4),
x
=
(–6; 3; 7; 9).
23.
a
1
=
(2; 3; –1; –8),
a
2
=
(–2; 0; 1; 5),
a
3
=
(–1; 5; –3; –13),
x
=
(4; 5; –4; 3).
24.
a
1
=
(4; 4; 3; –5),
a
2
=
(–1; –1; 8; 3),
a
3
=
(2; 2; 4; 7),
x
=
(2; 12; 5; 4).
25.
a
1
=
(2; 3; 3; 2),
a
2
=
(3; 1; 1; –2),
a
3
=
(4; –2; –2; 1),
x
=
(4; –3; –9; 5).
26.
a
1
=
(1; 2; 3; 0),
a
2
=
(4; –6; 8; –5),
a
3
=
(1; –3; 6; –4),
x
=
(–1; –1; 5; 7).
27.
a
1
=
(1; 2; 3; 4),
a
2
=
(1; 5; 4; 0),
a
3
=
(2; 4; –3; 17),
x
=
(–6; 3; 5; 22).
28.
a
1
=
(2; 3; 8; –8),
a
2
=
(1; 3; –4; 4),
a
3
=
(1;–1;–4; 4),
x
=
(4; 5; 2; 2).
29.
a
1
=
(2; 4; 3; –5),
a
2
=
(3; 2; 2; 2),
a
3
=
(1; –1; –4; 1),
x
=
(–1; 9; 1; 2).
30.
a
1
=
(2; 2; –1; –2),
a
2
=
(3; –2; 2; 4),
a
3
=
(1; 3; 0; 7),
x
=
(7; –1; –9; 7).
|