Задание
74.
Разложить
на
неприводимые
над
C
и
над
R
множители
.
1.
x
5
+
x
3
+
x.
2.
x
4
–
x
3
+2
x
2
+
x
–3.
3.
x
4
+
x
3
+3
x
2
+
x
+2.
4.
x
5
–
x
4
+5
x
3
–5
x
2
+9
x
–9.
5.
27
x
4
–9
x
2
+14
x–
4.
6.
x
6
+27.
7.
(
x
2
+
x
)
2
+4(
x
2
+
x
)–12.
8.
(
x
2
+
x
)
2
–14(
x
2
+
x
)+24.
9.
(
x
2
+4
x
+8)
2
+3
x
(
x
2
+4
x
+8)+2
x
2
.
10.
(
x
2
+
x
+1)(
x
2
+
x
+2)–12.
11.
(
x
2
+
x
+4)
2
+8
x
(
x
2
+
x
+4)+15
x
2
.
12.
4
x
4
–24
x
3
+29
x
2
+42
x
–63.
70
13.
(
x
+1)(
x
+2)(
x
+3)(
x
+4)–24.
14.
(
x
+1)(
x
+3)(
x
+5)(
x
+7)+15.
15.
4(
x
+5)(
x
+6)(
x
+10)(
x
+12)–3
x
2
.
16.
2
x
4
+7
x
3
–2
x
2
–13
x
+6.
17.
2
x
4
–
x
3
–9
x
2
+13
x
–5.
18.
x
4
–2
x
3
–3
x
2
+4
x
+4.
19.
x
4
–2
x
3
–11
x
2
+12
x
+36.
20.
x
4
+2
x
3
–16
x
2
–2
x
+15.
21.
x
4
+2
x
3
–
x
2
+2
x
+1.
22.
12
x
4
–4
x
3
–9
x
2
+1.
23.
x
5
–6
x
4
+16
x
3
–32
x
2
+48
x
–32.
24.
x
4
–
x
3
+2
x
2
+
x
–3.
25.
2
x
4
+7
x
3
–2
x
2
–13
x
+6.
26.
x
4
–4
x
3
+8
x
2
–16
x
+16.
27.
6
x
4
+5
x
3
–74
x
2
+11
x
+12.
28.
10
x
4
+21
x
3
–55
x
2
–72
x
+36.
29.
x
7
–
x
6
–
x
5
+
x
4
–
x
3
+
x
2
+
x
–1.
30.
2(
x
2
+6
x
+1)
2
+5(
x
2
+6
x
+1)(
x
2
+1)+2(
x
2
+1)
2
.
Задание
75.
Известно
,
что
α
является
корнем
многочлена
f
(
x
).
Найти
остальные
корни
многочлена
и
разложить
его
на
неприводимые
множители
над
C
,
над
R
и
над
Q
.
1.
f
(
x
) =
x
4
–2
x
3
+3
x
2
–2
x
+2,
α
= 1+
i
.
2.
f
(
x
) =
x
4
–4
x
3
+3
x
2
+8
x
–10,
α
= 2–
i
.
3.
f
(
x
) =
x
4
+3
x
3
+5
x
2
+4
x
+2,
α
= –1+
i
.
4.
f
(
x
) =
x
4
–2
x
3
+7
x
2
–4
x
+10,
α
= 1–2
i
.
5.
f
(
x
) =
x
4
–5
x
3
+3
x
2
+16
x
–10,
α
= 3–
i
.
6.
f
(
x
) =
x
4
+7
x
3
+14
x
2
+3
x
–15,
α
= –2+
i
.
7.
f
(
x
) =
x
4
+4
x
3
+6
x
2
+4
x
–15,
α
= –1–2
i
.
8.
f
(
x
) =
x
4
–2
x
3
+
x
2
–8
x
–12,
α
= 2
i
.
9.
f
(
x
) =
x
4
–4
x
3
+5
x
2
+12
x
–24,
α
= 2+2
i
.
10.
f
(
x
) =
x
4
–2
x
3
+12
x
2
–4
x
+20,
α
= 1–3
i
.
11.
f
(
x
) =
x
4
+4
x
3
–4
x
2
–32
x
–20,
α
= –3+
i
.
12.
f
(
x
) =
x
4
+5
x
3
+6
x
2
–19
x
–13,
α
= –3+2
i
.
13.
f
(
x
) =
x
4
–4
x
3
+10
x
2
+12
x
–39,
α
=2–3
i
.
14.
f
(
x
) =
x
4
+5
x
3
+14
x
2
+26
x
–20,
α
=–1+3
i
.
15.
f
(
x
) =
x
4
+
x
3
+6
x
2
+9
x
–27,
α
= –3
i
.
16.
f
(
x
) =
x
4
–7
x
3
+14
x
2
+17
x
–65,
α
= 3–2
i
.
17.
f
(
x
) =
x
4
+2
x
3
+2
x
2
–38
x
–39,
α
= –2+3
i
.
18.
f
(
x
) =
x
4
–
x
3
–2
x
2
–3
x
–1,
α
=
2
1
−
+
2
3
i
.
19.
f
(
x
) =
x
4
–
x
2
+2
x
–1,
α
=
2
1
–
2
3
i
.
20.
f
(
x
) =
x
4
+6
x
3
+14
x
2
–12
x
–36,
α
= – 3+3
i
.
21.
f
(
x
) =
x
4
+4
x
3
+16
x
2
+12
x
+39,
α
= –2+3
i
.
22.
f
(
x
) =
x
4
–
x
3
–12
x
2
–9
x
–27,
α
= 3
i
.
23.
f
(
x
) =
x
4
+2
x
3
–5
x
2
–36
x
–40,
α
= –2– 2
i
.
24.
f
(
x
) =
x
4
+4
x
3
–3
x
2
–50
x
–52,
α
= –3–2
i
.
25.
f
(
x
) =
x
4
+
x
3
+15
x
2
+43
x
+68,
α
= 1–4
i
.
26.
f
(
x
) =
x
4
+9
x
3
+27
x
2
+33
x
+34,
α
= –4+
i
.
71
27.
f
(
x
) =
x
4
–5
x
3
+25
x
2
–24
x
+20,
α
= 2–4
i
.
28.
f
(
x
) =
x
4
+8
x
3
+22
x
2
+16
x
+40,
α
= –4+2
i
.
29.
f
(
x
) =
x
4
–8
x
3
+22
x
2
+24
x
–75,
α
= 4+3
i
.
30.
f
(
x
) =
x
4
+3
x
3
+10
x
2
–57
x
+75,
α
=–3+4
i
.
Задание
76.
Выразить
симметрический
многочлен
через
элементарные
симмет
-
рические
.
Считая
х
i
корнями
многочлена
f
(
х
),
вычислить
значение
этого
выра
-
жения
.
1.
x
1
4
+
x
2
4
+
x
3
4
–
x
1
2
x
2
2
–
x
1
2
x
3
2
–
x
2
2
x
3
2
,
f
(
x
) = 2
x
3
+5
x
–8.
2.
S
(
x
1
4
x
2
),
f
(
x
) = –
x
3
+5
x
2
+7.
3.
(
x
1
–
x
2
)
2
(
x
1
–
x
3
)
2
(
x
2
–
x
3
)
2
,
f
(
x
) = 5
x
3
+2
x
2
–3
x
.
4.
(
x
1
x
2
+
x
3
x
4
)(
x
1
x
3
+
x
2
x
4
)(
x
1
x
4
+
x
2
x
3
),
f
(
x
) = 2
x
4
+5
x
3
+
x
2
–6
x
.
5.
S
(
x
1
4
),
f
(
x
) = 3
x
4
+2
x
2
+5
x
+1.
6.
S
(
x
1
2
x
2
),
f
(
x
) = 4
x
4
–
x
3
+2
x
2
+12
x
+126.
7.
S
(
x
1
2
x
2
2
),
f
(
x
) = 2
x
4
+3
x
3
+5
x
2
–7
x
+11.
8.
S
(
x
1
3
x
2
2
),
f
(
x
) = –2
x
4
+6
x
2
+8
x
–9.
9.
S
(
x
1
3
x
2
3
),
f
(
x
) =
x
4
–2
x
3
–2
x
2
–2
x
–2.
10.
S
(
x
1
4
x
2
x
3
),
f
(
x
) = 3
x
4
–2
x
3
+2
x
2
–6
x
+10.
11.
S
(
x
1
3
x
2
x
3
),
f
(
x
) = 4
x
3
+5
x
2
–6
x
+2.
12.
S
(
x
1
3
x
2
),
f
(
x
) = 3
x
3
+
x
2
–2
x
–4.
13.
S
(
x
1
4
),
f
(
x
) = 3
x
3
–2
x
+5.
14.
(
x
1
+
x
2
)
2
(
x
1
+
x
3
)
2
(
x
2
+
x
3
)
2
,
f
(
x
) = 2
x
3
+3
x
2
+4.
15.
(
x
1
+
x
2
)
2
+(
x
1
+
x
3
)
2
+(
x
2
+
x
3
)
2
,
f
(
x
) = 8
x
3
+4
x
2
+2
x
+1.
16.
(
x
1
+
x
2
+
x
3
)
2
+(
x
1
+
x
2
+
x
3
)
2
+(
x
1
+
x
2
+
x
3
)
2
+(
x
1
+
x
2
+
x
3
)
2
,
f
(
x
) =
x
4
–
x
3
+2
x
2
–3
x
+4.
17.
x
1
3
+
x
2
3
+
x
3
3
–2
x
1
2
x
2
2
–2
x
1
2
x
3
2
–2
x
2
2
x
3
2
,
f
(
x
) =
x
3
–3
x
+2.
18.
(2
x
1
–
x
2
–
x
3
)(2
x
2
–
x
1
–
x
3
)(2
x
3
–
x
1
–
x
2
),
f
(
x
) = 3
x
3
–2
x
2
+1.
19.
x
1
4
+
x
2
4
+
x
3
4
–2
x
1
x
2
–2
x
1
x
3
–2
x
2
x
3
,
f
(
x
) =
x
3
–
x
2
+2
x
+1.
20.
(
x
1
–
x
2
)
2
(
x
1
–
x
3
)
2
(
x
2
–
x
3
)
2
,
f
(
x
) = 2
x
3
+2
x
2
+
x
–1.
21.
x
1
4
+
x
2
4
+
x
3
4
+
x
1
2
x
2
2
+
x
1
2
x
3
2
+
x
2
2
x
3
2
,
f
(
x
) = 2
x
3
+
x
2
–3
x
–3.
22.
S
(
x
1
4
x
2
2
),
f
(
x
) =
x
3
+
px
+
q
.
23.
(
x
1
2
–
x
2
x
3
)(
x
2
2
–
x
1
x
3
)(
x
3
2
–
x
1
x
2
),
f
(
x
) =
x
3
+
px
+
q
.
24.
S
(
x
1
3
x
2
),
f
(
x
) = 2
x
3
+2
x
2
+4.
25.
(
x
1
2
+
x
1
x
2
+
x
2
2
)(
x
1
2
+
x
1
x
3
+
x
3
2
) (
x
2
2
+
x
2
x
3
+
x
3
2
),
f
(
x
) = 5
x
3
–6
x
2
+7
x
–8.
26.
(
x
1
–
x
2
)
2
x
3
+(
x
1
–
x
3
)
2
x
2
+(
x
2
–
x
3
)
2
x
1
,
f
(
x
) = 3
x
3
+6
x
2
–
x
+8.
27.
(
x
1
+
x
2
–
x
3
–
x
4
)(
x
1
+
x
3
–
x
4
–
x
2
) (
x
1
+
x
4
–
x
3
–
x
2
),
f
(
x
) =
x
4
+
px
3
+
qx
+
r
.
28.
x
1
4
+
x
2
4
+
x
3
4
–
x
1
2
x
2
2
–
x
1
2
x
3
2
–
x
2
2
x
3
2
,
f
(
x
) =
x
3
+
px
+
q
.
29.
(
x
1
+
x
2
)
4
(
x
1
+
x
3
)
4
(
x
2
+
x
3
)
4
,
f
(
x
) =
x
3
+
px
+
q
.
30.
S
(
x
1
3
x
2
x
3
),
f
(
x
) =
x
3
–2
x
2
–2
x
+2.
|