1.
Послание Президента РК народу Казахстана «Стратегия «Казахстан-2050» - новый
политический курс состоявшегося государства». - Астана, Акорда, 2012 г.
2.
Болонский процесс: Результаты обучения и компетентностный подход (книга-
приложение 1) /Под науч. ред. д.п.н., профессора В.И. Байденко. – М.:
Исследовательский центр проблем качества подготовки специалистов, 2009. – 536 с.
3.
Cross-Border Tertiary Education: A Way towards Capacity Development // OECD, World
Bank. Paris OECD Publishing, 2007.
4.
Education at a Glance // OECD. Paris: OECD Publishing, 2010.
5.
Доклад о человеческом развитии в Центральной Азии. В будущее без барьеров:
Региональное сотрудничество в области человеческого развития и обеспечения
человеческой безопасности. Под редакцией Йоханнеса Линна. UNDP, 2005 - 281.
6.
Higher Education to 2030. Vol. 2: Globalization // OECD. Paris: OECD Publishing, 2009.
7.
The OECD Innovation Strategy: A Head Start on Tomorrow // OECD. Paris: OECD
Publishing, 2010.
8.
Quality Assurance in Transnational Higher Education. Workshop Report // European
Association for Quality Assurance in Higher Education (ENQA), 2010.
9.
Towards a Future Higher Education Landscape / Higher Education Authority. Dublin,
2012. P.25. URL: http://www.hea.ie/files/TowardsaFutureHigherEducation Landscape.pdf
10.
Дорога к академическому совершенству. Становление исследовательских
университетов мирового класса / под ред. Ф.Дж. Альтбаха, Дж. Салми; пер. с анг. М.:
Весь мир, 2012. 416с.
11.
Императивы интернационализации / Отв.ред. М.В. Ларионова, О.В. Перфильева –
М.: Логос, 2013. 420 с.
127
UDK 519.63
L.M. Tukenova
NON-IMPROVED RATE OF CONVERGENCE ESTIMATE IN THE
METHOD OF FICTITIOUS DOMAINSS FOR THE OCEAN MODEL
(Almaty, Kazakh Economic University of the name T. Ryskulov)
Бұл жұмыста сызықты емес мұхит есебінің моделіне жалған облыс әдісінің
нұсқалары қарастырылады. Жалған облыс әдістерінің кӛмегімен жуықтау әдісінің
жинақталуы және шешімінің бар болуы туралы теорема зерттелген. Жалған облыс
арқылы жинақтылықтың жылдамдығының жақсартуға келмейтін бағалау
кӛрсетілген.
В работе изучаются варианты метода фиктивных областей для нелинейной модели
океана. Исследованы теорема существования и сходимости решения приближенных
моделей, полученных с помощью метода фиктивных областей. Выведена
неулучшаемая оценка скорости сходимости решения метода фиктивных областей.
The versions of fictitious domains method for non-linear ocean model are studied in this
work. The theorems of existence and convergence for the auxiliary problem of the fictitious
domains method are proved. The non-improved convergence speed estimation has been
obtained.
Түйін сөздер: жалған облыс әдісі, жақсартуға келмейтін бағалар.
Ключевые слова: метод фиктивных областей, неулучшаемая оценка.
Keywords: fictitious domains method, unimproved estimation.
Nonstationary linear equation of the ocean stream in the domain
,
)
,
0
(
T
T
,
)
,
0
(
1
H
2
1
R
leads to the evaluation of the next differential equations [1]
t
0
,
ˆ
2
2
f
l
x
(1)
,
0
)
(
ˆ
3
0
3
2
1
1
3
0
dx
x
x
dx
v
i
d
H
H
,
0
3
x
,
0
dx
(2)
With initially limited conditions
,
,
0
,
0
0
0
3
0
3
3
x
x
t
H
x
x
(3)
where υ=( υ
υ
),
ˆ =(
2
1
,
x
x
),
,
0
r
lateral limit of domain
. (4)
The problem (1)-(4) can be solved by the method of fictitious domains [2], [3]. We
solve the system of equations with the smallest parameters by using the method of fictitious
domains with the continuation by the smallest coefficients in auxiliary areas
,
)
,
0
(
D
T
D
T
0
0
1
)
(
)
,
0
(
D
H
D
, which strictly contains in itself
with the lateral limit G
)
(
ˆ
0
2
3
2
0
x
f
l
x
t
, (5)
128
,
0
ˆ
3
0
dx
v
i
d
H
,
0
3
x
D
dx
,
0
(6)
),
(
0
0
x
t
(7)
,
0
0
3
x
,
0
3
3
H
x
x
,
0
Г
(8)
где
)
(
0
х
{
,
,
0
x
0
,
1
D
x
Methods of getting the unimproved estimation of convergence velocity by using the
method of fictitious domains for linear parabolic equations [4] are not appropriate for this
systems. In this work we offer you new slant in getting exact estimation of mistakes between
the solutions of problems and estimated solution which was obtained by the method of
fictitious domains.
Further we will designate the different constants which depend on this problems and constant
theorem of inflow and do not depend on the smallest parameter ε by C. We will use the
designations of spaces from the work [5].
Lets write the spaces
)
(
ˆ D
C
{
),
(
)
,
(
2
2
1
D
C
H
dx
v
i
d
,
0
ˆ
3
,
0
Г
,
0
3
H
x
x
.
0
0
3
x
}
The locking
)
(
ˆ D
C
in the normals of the spaces
),
(
2
D
L
),
(
1
2
D
W
)
(
2
2
D
W
we designate by
),
(
0
D
V
),
(
1
D
V
)
(
2
D
V
.
Definition. The strongest solution of the problem (5)-(8) is the function
))
(
;
,
0
(
2
2
D
V
T
L
,
)),
(
;
,
0
(
ˆ
2
2
D
L
T
L
))
(
;
,
0
(
2
2
D
L
T
L
t
, which
satisfies to the equation (5)-(6) and to the initially limited conditions (7), (8) in the suitable
way.
Lets continue the functions
).
,
(
),
(
0
t
x
f
x
by zero out of
.
The next theorem is obtained:
Theorem 1. Let
)),
(
;
,
0
(
)
,
(
2
2
D
L
T
L
t
x
f
),
(
)
(
1
0
D
V
x
.
2
C
Then there are
only one solution of the problems (5)-(8) and for this solution the estimation below is
appropriate
,
ˆ
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
2
2
2
2
2
2
C
D
L
T
L
D
V
T
L
D
L
T
L
t
(9)
,
))
(
;
,
0
(
2
2
C
L
T
L
(10)
where
,
С
,
0
- is the solution of the problems (1)-(3). The estimation (10)
is unimproved in the order of
.
The method of fictitious domains in the continuation by the biggest coefficient.
The method of fictitious domains for the problems (1)-(3) in the continuation with the
biggest coefficients will lead us to the solution of the system of differential equations in the
domain
.
T
D
129
,
)
ˆ
(
2
3
2
0
f
l
div
x
t
(11)
H
dx
div
0
3
,
0
(12)
The systems (11), (12) can be solved with the conditions
),
(
0
0
x
t
,
D
x
,
0
Г
),
,
0
( T
t
(13)
And with the conditions of accordance
,
0
]
[
,
0
]
[
n
),
,
0
(
T
t
(14)
where
metric tensor,
{
,
,
х
0
,
D
х
,
[.]
means the leap of the function in the boundary
.
The next theorem takes place
Theorem 2. Let
),
(
)
(
1
0
D
V
х
)),
(
:
;
,
0
(
2
2
D
L
T
L
f
.
2
C
Then the problems
(11)-(14) have the only solution and for this solution the next estimations are obtained
,
<
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
2
2
3
3
1
2
2
2
C
t
D
L
T
L
x
x
D
V
T
L
D
L
T
L
),
(
ˆ
ˆ
)
(
1
))
(
;
,
0
(
)
(
0
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
))
(
;
,
0
(
2
2
1
2
2
0
2
2
2
2
0
2
2
1
1
0
2
2
2
2
2
2
2
D
L
T
L
D
V
D
L
T
L
D
L
T
L
L
T
L
D
L
T
L
x
x
D
L
T
L
x
x
W
T
L
f
C
(15)
,.
))
(
;
,
0
(
2
2
C
L
T
L
(16)
Where in
0
the solution of the problems (11)-(14) leads to the solution of the problems
(1)-(3).
The estimation of solution proximity (16) is unimproved in the order of
.
Mathematical modeling of limited conditions of oceanology by using the method of
fictitious domains.
In the systems (1), (2)in physical setting there are not any limited conditions for the function
)
,
,
(
2
1
t
x
x
(level of water). This fact in some cases makes it difficult to find the effective
numerical algorithm. Then we offer the variation of the method of fictitious domains for the
non linear stationary problems, where we can define the limited conditions for the function
).
,
,
,
(
2
1
x
x
t
Lets look to the system of nonlinear stationary model of ocean
f
l
x
2
3
2
0
)
(
, (17)
H
x
dx
w
d
0
3
3
,
0
,
0
130
With limited conditions
,
0
3
3
H
x
x
,
0
0
3
x
,
0
(18)
where
).
,
,
(
3
0
3
2
1
x
dx
v
i
d
For the problems (17), (18) in accordance to the method of fictitious domains we
formulate auxiliary problem. Lets suppose that the domain
]
,
0
[
]
1
,
0
[
]
1
,
0
[
H
D
is
parallelepiped
f
x
l
x
)
(
)
(
0
2
3
2
0
3
, (19)
H
x
dx
v
i
d
0
3
3
,
0
,
0
(20)
By putting instead of
1
x
,
2
x
–the periodical conditions for the function
,
,
1
0
i
i
x
k
i
k
x
k
i
k
x
x
k=0,1, i=1,2, (21)
,
1
0
i
i
x
k
i
k
x
k
i
k
x
x
k=0,1, i=1,2, (22)
,
0
3
3
H
x
x
.
0
0
3
x
(23)
The solution of the problem obtains next theorem.
Theorem 3. If
)
(
2
D
L
f
,
.
2
C
, Then there are only one solution of problems (19)-
(23) exists and for this solution the next estimation can be used
,
1
)
(
L
)
(
)
(
2
0
2
1
D
D
L
D
V
f
C
,
)
(
L
)
(
)
(
2
1
2
2
D
D
V
D
W
f
C
,
)
(
2
C
L
in the smallest
,
)
(
2
D
L
f
(24)
where
is the solution of the problems (17)-(18)
C
when
.
0
We notice that the numerical solution according to the
we get the equation of Puasson with the discontinued coefficients which depends
on the smallest parameters. Here we can use the ittirational methods offered in the article [2],
where the velocity of convergence does not depend on the changes of the smallest parameter
. In the same way we can research the method of fictitious domains with the offer to the
biggest coefficient with the limited conditions (21)-(23). Obtained exact estimation of the
convergence velocity
.
)
(
2
C
L
(25)
We will learn the mathematical modeling of the limited conditions by using the method of
fictitious domains for the non-stationary equations of oceanology.
131
,
)
(
)
(
0
3
3
2
0
x
f
x
t
H
dx
v
i
d
0
3
,
0
(26)
With the limited conditions (21), (22) and
,
0
0
t
,
0
0
3
x
.
0
3
3
H
x
x
The next theorem can be obtained
Достарыңызбен бөлісу: |