Айна
ауданы
1м2
100м2
500м2
1000м2
1500м2
Саны
1
100
500
1000
1500
Қуаты
100вт
10квт
50квт
100квт
150квт
Энергиясы
0,1квт*
сағ.
10квт*
сағ.
50квт*
сағ.
100квт*
сағ.
150квт*
сағ.
Күннен шығатын энергия 4*10
3
эрг яғни 4*10
26
дж/м
2
минутына бөлінеді. Осы энергияның
жер бетіне жетуі 1:20 000 000 екені дәлелденген. Бұл деген 4*10
26
дж/2*10
7
=2*10
19
дж/м
2
*мин
энергия жер бетіне жетеді. Біз осы энергияны толық күйінде жер бетіне жеткізу мәселесі туындап
отыр. Сондықтан жасанды жер серіктеріне айналар қондырғыларын орналастыру арқылы екі
жобаны қарастырып отырмыз. Күн энергиясынан 20% ауа қабаттарында қалады. Яғни, 80%-ы
жерге жетеді деген сөз. Ол деген 4*10
33
эрг=4*10
26
дж/см
2
мин. Энергия 1м
2
ауданға бөлінеді.
4*10
19
дж/м
2
мин. - әр 1м
2
ауданға осындай жарықтар энергиясы жеткізіледі. Ал жер серігі айналар
жүйесі қондырғыларын пайдаланғанда осы энергияға қосымша бірнеше айналардан энергия
жеткізіледі деген сөз. Оңтүстікте 270 күн ашық болады деп есептегенде, осы уақыттағы энергия
бірнеше есе өседі. Себебі ауданы 1м
2
1000 айнадан мың жарық сәулесі жердегі айналар жүйесіне
қосымша энергия болып барады. Қыс айларында бұлтты, ауа қабаттарынан өтіп, осы энергия
жерге жеткізіледі. Бұл кезде 20% энергия шығын болатын болса, қалған энергияның бөлігін жерге
жеткізуге болады. Яғни, жерге жеткен энергия минутына 2*10
16
дж/м
2
.мин, сағатына 2*10
18
квт.сағ,
тәулігіне 4*10
12
квт*сағ.болады.
Ауданы
1см
2
1м
2
1 сағ.
24 сағ.
Күн энергиясы
4*10
26
дж/см
2
4*10
22
дж/м
2
*мин
4*10
19
кв
т/сағ
96*10
19
квт/сағ
*мин
Жер бетіндегі
энергия
2*10
19
дж/см
2
*мин
2*10
15
дж/м
2
*мин
2*10
12
кв
т/сағ.
48*10
12
кв
т/сағ
Жердегі жылу
мөлшері энергиясы
2кал/см
2
2*10
4
кал/м
2
5*10
3
квт/
сағ
2*10
4
квт/
сағ.
Линзалар
жиынын
қолданғандағы
энергия
8*10
26
дж/см
2
*мин
8*10
22
дж/м
2
*мин
8*10
19
кв
т/сағ.
2*10
21
квт
/сағ.
Қорытынды
Қазіргі уақыттағы энергетика мәселесіне көз жүгіртсек, есепсіз пайдаланып жатқан энергия
көздері көмір мен мұнай, газ өнімдерін көреміз. Сол қорларды бей-берекет пайдаланудың
арқасында түбі көріне бастады. Яғни, осы қорлар бітпей тұрып жаңа энергия көздерін пайдалану
әдістерін меңгеруді қолға алмасақ болмайды. Қазіргі уақыттағы ғылымның жетістіктеріне
тоқталып көрейік. Ураны және оның изотоптары жануы кезінде теңдесі жоқ көп энергия бөлінеді.
Сутегі, гелий, бор сияқты жеңіл элементтердің ядроларын қосуды, яғни, синтездеудің арқасында
көп энергия алуға болады. Кез-келген электр станциясының мақсаты суды қыздыру нәтижесінде
буға айналдырып, бумен қалақшаны ұру арқылы энергия өндіруге бағытталған. Жел энергиясы
биіктіктен құлаған судың энергиясын және күн энергиясын осы мақсатта пайдалану жолдарын
қарастырып отырмыз. Жер серіктерін пайдаланып күн энергиясын жерге жеткізу арқылы электр
энергиясын алуды қарастырып отырмыз. Сонымен қатар жер асты жылуының энергиясын және
жер асты суларының энергиясын пайдалану алдағы уақыттың жұмысы. Жердің 2500-3000 км
тереңдіктегі судың температурасы 150С-200С дейінгі аралықта болады екен. Міне осы энергияны
жер бетіне шығарып қолдану керектігі шығып отыр. Жер бетінде шағын күндер орналастыру
арқылы да энергия өндіру жұмыстары қазіргі уақытта ғылыми негізде жүргізіліп жатыр. Келешек
осы жолмен де энергия алуға болады. Осы жасанды күнді күшті магниттік қондырғылармен ұстап
тұру жолдары қарастырылып жатыр. Бірақ бұл жоба кез-келген қондырғыны күлге айналдырып
жіберуде. Сондықтан оссы энергияны ұстап тұратын қондырғылар жасау үшін қазіргі уақытта
жұмыс жүргізіліп жатыр.
Әдебиеттер тізімі:
1. /Тихонов А.Н. Трансформация энергии в хлоропластах — энергообразующих органеллах
растительной клетки // Соросовский Образовательный Журнал. 1996. /.
2./Климов В.В. Фотосинтез и биосфера // Там же. № 8. С. 6-13/.
3./Скулачев В.П. Эволюция биологических механизмов запасания энергии // Там же. 1997/.
4.http://www.eren.doe.gov.
5./Мэрфи Л. M. Перспективы развития и финансирование технологий использования
возобновляемых источников энергии в США // Труды Междунар. конгресса "Бизнес и инвестиции
в области возобновляемых источников энергии в России", Москва, 31.05—4.06. 1999. M.: НИЦ
"Инженер", 1999. C. 59-67/.
6./Программа США "Миллион солнечных крыш" // Возобновляемая энергия. 1998/.
7./СтребковД. С. Новые экономически эффективные технологии солнечной энергетики // Труды
Междунар. конгресса "Бизнес и инвестиции в области возобновляемых источников энергии в
России". M. 1999. C. 187—208/.
8./Бусаров B. Успех поиска путей. Концепция перехода к устойчивому развитию и
особенности региональной энергетической политики. - Зеленый мир,1999, № 16-17/.
9./Бутузов B. A. Нетрадиционные возобновляемые источники энергии в системах
теплоснабжения Краснодарского края. - Краснодар: ККП Союза НИО CCCP, 1989/.
10./Системы солнечного тепло- и хладоснабжения/ P. P. Авезов, M. A. Барский-Зорин, И. M.
Васильева и др. Под. ред. Э. B. Сарнацкого и C. A. Чистовича. - M.: Стройиздат, 1990/.
11. /Бутузов B. A. Анализ опыта проектирования и эксплуатации гелиоустановок горячего
водоснабжения/.
Сборник "Энергосбережение на Кубани"/ Под общ ред. Э. Д. Митус. Краснодар: "Советская
Kyбань", 1999.
12./ Государственный доклад- "O состоянии окружающей природной среды Российской
Федерации в1997 г." - Зеленый мир, 1998, /
УДК004.383.8
Ж. К. КЕНЖЕКЕЙ
SULEYMAN DEMIREL UNIVERSITY
E-mail: kenjekey@gmail.com
PHYSICS WITH ROBOTICS
Annotation
Why physics with robotics? Two reasons - inherent to robotics is measurement and actuation. In
other words, in order for a robot to interact with the world, it has to investigate and do something with
that investigation. It has to apply what it has "learned". Therefore, we can say that inherent to robotics is
investigation and application. The same is true for physics education. In classroom, I encourage my
students to investigate and apply what they have learned to something in the real world. Robotics gives
us these two aspects of physics education in one very well connected package. Throughout this work, I
will try to explain about opportunities to use robotics in classroom for investigation and applied physics
projects.
These are not, however, the only reasons we use robotics in our classrooms. Robotics is engaging,
promotes creative problem solving, encourages students to represent their ideas in the real world with a
precision system, provides excellent feedback and finally, robotics can be easily connected to knowing
and learning a great diversity of physics concepts and skills.
Why LEGO® MINDSTORMS® based robotics? Combined, teachers around the world have more
than 15 years of experience with this system. I have used the MINDSTORMS system the most. I have
found it to be an affordable, durable, and flexible solution for our project needs. The core of my ideas
will work with most any sensor/motor based robotics system.
Whether it is LEGO based or not, robotics is a great hook in a classroom environment, engaging
reluctant and enthusiastic learners. Teachers will see that these systems provide students with exceptional
feedback, helping them to develop their ideas and successfully tinker with physical phenomena as they
endeavor to take on various science and engineering challenges. Furthermore, teachers will see that after
class has ended, they still have students in the room. Students do not want to leave. They are having a
great time challenging themselves and they are often so proud of what they have made that they bring
friends later in the day to see their creations.
Key words:physics, robotics, LEGO MINDSTORMS, school education, experiments,
demonstrations.
Physics and robotics
Supplement to Existing Curriculum
The purpose of this work is not to replace current school physics curriculum. Instead, the purpose of
my work is to supplement school curriculum. I will try to share with teachers in Kazakhstan a set of
activities centered on LEGO robotics because they work well to engage students in the process of
learning the concepts and skills of physics. But I know that every school and every class within every
school is different and those differences warrant adaption. In writing this work, I wanted to focus how
every teacher in Kazakhstan can utilize LEGO® MINDSTORMS® in every classroom. Therefore, while
the activities of this work do not require any modification to use in the classroom, I encourage teachers
and students to do. I supplement my own physics class with new ideas. The ideas that inspired the
activities of this work often came from conversations I had with my own students, teachers and other
specialists in fields related to physics education. I hope that the ideas will help to teachers and students to
create unique and powerful learning opportunities in classrooms in Kazakhstan.
LEGO® as a Physics Learning Technology
The goal of this work is to describe how the tools of a LEGO® MINDSTORMS® robotics kit fits
into a physics learning environment. Because the work itself serves to demonstrate specifically how the
LEGO® MINDSTORMS®kit is used in a physics class, my approach in this section is to treat the topic
more generally, explaining more about why I chose these tools in our own physics classrooms. This
section is also designed to be "food for thought" for teachers and students as they start to modify and
create activities. Generally speaking, the components of a LEGO® MINDSTORMS®kit serve as both
measurement and design tools. As a measurement tool, they are only limited by the type of sensor to
which you can connect. Both the NXT and RCX can be connected to many LEGO and non-LEGO based
sensors. As a design tool, they afford the student a great deal of precision in their measurements and they
allow students to use the same medium for designing scientific experiments as well as solutions to
engineering design challenges.
LEGO® MINDSTORMS® as a measurement tool.
With LEGO built light sensors, thermometers, angle sensors, microphones, and distance sensors,
both the RCX and NXT serve as stand-alone measurement tools. Both the NXT and the RCX have a
"view" option that allows to see the data streaming in on any sensor directly on the device's screen. The
NXT can be set-up quickly for a diversity of short and simple investigations.
With a little more effort, the NXT can be extended to display data from third party sensors as well.
For example, teacher can connect the NXT and sensors made by Vernier Software and Technology. Used
this way, one can turn the NXT into a customizable data display center.
Using LEGO® MINDSTORMS® for accuracy and precision investigation and design
activities.
How often do students discuss "human error" in their lab reports? How often are the data collected
by students inconclusive? How often are discussions with students less about what the data are and more
about what the data should be? The final point that I wish to discuss in this section about the role
LEGO® MINDSTORMS®plays in physics classroom is the issue of accuracy and precision in robot
based physics investigations.
While the robotic tools used in the activities of this work enhance student investigations and applied
physics design projects, they do not take the thinking out of the process. LEGO® MINDSTORMS®do
not necessarily make a student's measurements more accurate. Students will still need to learn and
practice the essential skills of experimental design and the methods of science. They will need to
determine the parameters of their experiment such as which variables to control, instruments to use, units
of measurement, the duration of each run, and the number of runs. They will practice how to analyze
data, reading trends and fitting appropriate models. They will practice evaluating the results of an
investigation and comparing their results with their predictions.
LEGO® MINDSTORMS®is very helpful in improving the precision of student measurements. The
precision of a set of measurements communicates how close the measurements are to each other. Precise
measurements have a very small variance. NXT and RCX based experiments come in quite handy when
precision is needed. If teacher program the robot to move for 5 wheel rotations, it will travel the same
distance every single time. If student program the robot to move its motor at a specified speed, it will do
that every single time.
With the exception of low battery issues, students will be very pleased with the precision of the data
collected. This will be evident in the activities of this work. Experiencing the precision of data in a
LEGO® MINDSTORMS®based investigation opens up students mind to investigations that students did
not think possible before.
LEGO® MINDSTORMS® as a physics investigation and design tool.
As a measurement tool, the NXT and RCX stand with meter sticks, stop watches, spring scales,
thermometers, digital force meters, digital motion detectors, voltmeters, ammeters, and other instruments
in your physics equipment inventory. But, what about the rest of the pieces that come in a LEGO®
MINDSTORMS®kit? LEGO is, after all, known as a construction medium. The LEGO blocks, beams,
wheels, gears, etc allow students to build a myriad of set-ups for investigations and applied physics
projects.
Bridging the gap between physics and engineering
Engineering design challenges are not new to physics classes. From paper airplanes, egg drops,
water rockets, toothpick bridges and mousetrap cars, engineering challenges in physics instruction allow
students the opportunity to engage in creative, enjoyable, and practical ways. Engineering design
challenges gives students an opportunity to talk about physics as it relates to something they created,
something practical. Engineering design challenges puts physics to use and immediately answers the
question, "Why are we learning this?"
If physics teachers already do engineering design challenges, how doLEGO® MINDSTORMS®
kits enhance this form of instruction? They maximize the ratio of equipment to project possibilities. With
egg drops, toothpick bridges and mousetrap cars, teacher need to obtain and maintain a steady supply of
materials, each set of materials dedicated to only a few types of projects. With LEGO®
MINDSTORMS® the number of projects is almost limitless. Perhaps teacher will not do an egg drop
project with MINDSTORMS or launch an NXT in a rocket, but with one kit of materials, teacher can do
many other very engaging applied physics projects.
Summary
In this work, I emphasize the link between physics investigations and engineering design by
providing activities that show students the need to investigate while taking on an engineering design
challenge. For example, students will investigate gear ratios while creating a motorized crane or drag car
and investigate sound waves while creating a system to make the best ear protection. By having students
engaged in projects that synthesize investigations with engineering design, teacher are helping them close
the gap between the concepts and skills of physics and the practical use of those skills. In closing the gap,
I try to help students take what they learn in the classroom and use it in the rest of their lives.
References:
1.
www.phvsicswithrobotics.com
2.
www.legoengineering.com
3.
www.MINDSTORMS.lego.com
4.
www.vernier.com/nxt
5.
www.education.rec.ri.cmu.edu/index.htm.
6.
www.lugnet.com
7.
www.domabotics.com/index.php
8.
www.philohome.com
9.
www.extremenxt.com/lego.htm
10.
www.legoeducation.com
11.
www.hitechnic.com
12.
www.mindsensors.com
13.
www.dcpmicro.com
14.
Bratzel, B. (2007). Physics by Design, 2nd Edition, ROBOLAB Activities for the NXT and
RCX. Knoxville, TN: College House Enterprises, LLC.
15.
Erwin, B. (2001). Creative Projects With LEGO® MINDSTORMS®. Boston, MA:
Addison- Wesley.
16.
Wang, E. (2007). Engineering With LEGO® Bricks and ROBOLAB™, 3rd Edition.
Knoxville, TN: College House Enterprises, LLC.
Түйін
Мақалада мен физикалық ізденістер мен инжинериялық дизайн арасындағы байланысты
көрсету арқылы студенттерге ижинериялық дизайнмен жұмыс кезінде зерттеу жұмыстарының
қажеттігін көрсеттім.Студенттерді зерттеу жұмыстарына қатыстыра отырып, мұғалім оларға
физика негіздері мен тәжірибелер арасындағы бос орынды толтыруға көмектеседі.
Resume
In this work, I emphasize the link between physics investigations and engineering design by
providing activities that show students the need to investigate while taking on an engineering design
challenge. By having students engaged in projects that synthesize investigations with engineering design,
teacher are helping them close the gap between the concepts and skills of physics and the practical use of
those skills.
Özet
Bu makale, ben öğrencilerin bir mühendislik tasarım sorunu üzerine çekerken araştırmaya ihtiyaç
gösteren aktiviteler sunarak fizik araştırmaları ve mühendislik tasarım arasındaki bağlantıyı vurgular.
Mühendislik tasarımı ile soruşturma sentez projeleri yapan öğrenciler, onlara kavram ve becerileri fiziğin
ve bu becerileri pratik kullanımı arasındaki boşluğu kapatıyor.
УДК 62-501
Kanatbekkyzy Aidana
Suleyman Demirel University
Smart home assistant based on Arduino platform
Abstract:
This research paper describes the overall architecture of small robot called “Smart Home Assistant”.
Imagine a situation when you leave home and there is nobody at home or just your kids’ stay at home all
alone. In this kind of situations, this robot serves as an assistant for you. Because, it will protect your
home from suspicious smells, like gas and fire smells; room temperature changes by informing the owner
of this apartment via SMS.
Generally a robot is a mechanical or virtual artificial agent, usually an electro-mechanical machine
that is guided by a computer program or electronic circuitry. Robots can be autonomous, semi-
autonomous or remotely controlled. By mimicking a lifelike appearance or automating movements, a
robot may convey a sense of intelligence or thought of its own. The branch of technology that deals with
robots is called robotics. [1] Nowadays, robots do a lot of different tasks in many fields and the number
of jobs entrusted to robots is growing steadily. That's why in my opinion one of the best ways how to
divide robots into types is a division by their application. There are:
Industrial robots - industrial robots are robots used in an industrial manufacturing environment.
Domestic or household robots - robots used at home.
Medical robots - robots used in medicine and medical institutions.
Service robots – are robots that don’t fall into other types by usage. These could be different data
gathering robots, robots made to show off technologies, robots used for research, etc.
Military robots - robots used in military. This type of robots includes bomb disposal robots, different
transportation robots, reconnaissance drones.
Entertainment robots - these are robots used for entertainment. It starts with toy robots or the
running alarm clock and ends with real heavyweights such as articulated robot arms used as motion
simulators.
Space robots - this type would include robots used on the International Space Station, Canadarm that
was used in Shuttles, as well as Mars rovers and other robots used in space.
School bots - these types of robots assist teachers in getting children more motivated about learning.
Hobby and competition robots – are robots that you create. Line followers, sumo-bots, robots made
just for fun and robots made for competition. [2]
This robot is a type of domestic or household robots as it helps you control the house, and helps you
to keep a house clean, by vacuuming any rooms inside this house. Moreover, this type of robot has an
excellent future since it has a broad use in every field of human life. In near years, every household will
have Domestic Bots which then will perform a substantial amount of chores.
The vision of this research is to develop interesting and useful robot, which provides efficiency,
usability, reliability and we consider the fact that the user is interested in using this robot.
Efficiency: The robot is effective, because it is very easy to use and is suitable not only for
specialized workers, but also for the general population, especially for mothers. And this robot is
effective because it inform you when something happens in home. It will effectively protect your home.
Usability: Author thinks that it is the most useful tool in home. It will inform people by sending
message, and then people can quickly go home, and then prevent from possible dangerous accidents. And
it is useful when your children are all alone at home.
Reliability: The reliability of this project is also provided, because in this robot, there are sensors,
each of which performs its own work. And in these sensors, there are ranges of temperature, voltage for
signaling. Project is the reliable too, because it does not need to be updated, and anybody can use it for
many years.
To construct this robot, the Arduino platform was used. Arduino is an open-source electronics
prototyping platform based on flexible, easy-to-use hardware and software. The Arduino project is a fork
of the open source Wiring platform and is programmed using an Arduino programming language
(Wiring-based (syntax and libraries)), similar to C++ with some slight simplifications and modifications,
and a Processing-based integrated development environment (IDE). Also Arduino can sense the
environment by receiving input from a variety of sensors and can affect its surroundings by controlling
lights, motors, and other actuators. For this research, sensors like gas, microphone, temperature, flame
and motion were used. By using these sensors, the robot is enabled to detect gas smells, fire, sound and
any unpredictable motion.
In Figure-1 showed connection of Arduino platform and XBee shield. And for using this shield
author uses program called “X-CTU” which showed in Figure-2.
Figure 1- The combo of Arduiono microcontroller and Xbee shield
Figure 2- The software package called “X-CTU” for XBee shield.
Also in Figure-3 showed how connect temperature & humidity sensor to Arduino and in Figure-4,
there is source code of this connection.
Figure 3 – The connection of temperature sensor into Arduion MC.
Figure 4- The fragment of code for temperature sensor detection
Достарыңызбен бөлісу: |