Математический анализ: введение в анализ, производная, интеграл



Pdf көрінісі
бет88/135
Дата31.10.2022
өлшемі16,21 Mb.
#46579
1   ...   84   85   86   87   88   89   90   91   ...   135
Байланысты:
Anti-Demidovich Lyashko I I i dr Tom 1 Vvedenie v matematicheskij analiz proizvodnaja integral 2001 ru T 358s

\ /
a2 
— 
x 2 
dx
+ e
Решая это равенство относительно J v a 2 —
x2 dx,
получаем
ч /a
2
— ж
2
йж = ^ \ / a
2
— 
ж2 
+
arcsin — + С, 
а ф 
0
. ►
У 

L
a
 
' '
5 5 .
J
x2
\ f a 2~+~x2 d x .
◄ Имеем
J
x 2 
\/ 
a2 + ж
2
йж =
J
 
ж rf 
^
(a
2
+ ж
2 ) 2

= j ( a
2
+ ж
2 ) 2
— 
1
J
(a2 + ж
2
) \ / а
2
-f
" * 2
^* ^
= - ( а
2
+ ж 2) ! - — I
4
н
1
e


218
Гл. 3. Неопределенный интеграл
[ у /
а2
+ ж
2
dx 
= х у /а 2 + х 2 — / — Х
— 
dx
=
х 
\ / а 2 +
х 2 — 
—— а

dx
=
У 
J у/а2 + х2 
J
у/а2 + х2
=
х у / a2 + х 2 — 
J
у /
о2 +
х 2 dx
+
a
In 
\х + у / а 2
+ х2| + (7;
J
у / а 2 + х 2 dx =
у / а 2 + х 2 +  In |х + у /а 2 + х 2\ + С.
Окончательно получаем
/
х i / ® 2
+ *2 dx = —---- ------- - \ / а 2 +
х 2 —
In |х +
у / а 2
+ х2| + С.
д 

8
5 8 / х sin \/х d x .
◄ Замечая, что x d x  = 2(д/х
) 3
d(^/x), и интегрируя по частям, получаем 
У ж sin V ^d x =
2
J
 
(V x
) 3
sin 
d(y//) =
- 2
J
{у/ i f  
d( cos 
y/i) 
=
= —
2
л/а+cos y/x +
6
J
x cos y/x d(y/x) = —
2
V^x^cos 
+ e j x  d(sin \/x ) =
- _ 2 \ / i S c o s V^c + б х э т л / х - 12 
J
y/x 
s i n
y /x d {y /x )~
— — 2
у
/
х
^
cos
-\/
x
+
6
x sin 
+
1 2
J
y/x
d(cos \/x ) =
= —2\/x® cos л/х +
6
x sin y/x + \2y/x cos yfx — 
1 2
sin y/x + C =
=
2
^/x 
(6
— x) cos л/х +
6
(x — 
2
) sin y/x + C, 
ж ^
0
. ►
Вычисляем последний интеграл:
Kly 
f x e ^ ' s *  
,
b ( • J - J  ( T T ^ F 2' *•
/ - = = v - - / -
J (
1
+ X
2 ) 2
^
71 + X 2
, имеем
d(earctg*) =
l e
" ' 1* 1
 
girctg*
V l + X
2
1 y / ( l + x 2)3
xe
110* * 1
/■
xearc,«*
л/
1
+ X*
/ \A + x
2
л
/ 1
+ x
2
dx =
.arctgi
«/ M
r c t g *
( 1
+ X2);
dx,
откуда /
5 8
x — 
1
F rctg* + a
2
л
/ 1
+
* 2
^
= J 
6 
cos ^

^2
 
= f e“* s*n 
dx ■
Очевидно,


I
 
C0S 
= — 
e ° X
cos 
6
x -)—
f
e ax s i n b x d x =
—e ax c o s b x + —I
2
;
J

a J

a
^2Z I  
s *11
bx d(ea i) = _ eax sin b x ---- f
e ax 
cos bx dx = —eax sin bx — — /
1
;
a J

a J

a
5 9
• /
r — e (“ cos bx + fcsin bx) 


eax 
I a sin bx — b cos bx)
1
* + * --------- ^ + С ; 
72
=

a~ + b2--------- 1 + 6 - >>
e2x sin
2
x d x .


§ 1. Простейшие неопределенные интегралы
219
◄ Используя предыдущий пример, получаем
J
е2х sin
2
х dx =

J
е2* dx — i
J
е2х cos
2
dx = i e 2x — i e 2:r(sin 
2
x + cos 
2
x) + C.
Н а х о ж д ен и е следую щ их и н т е гр а л о в о сн о в ан о н а п р и вед ен и и к в а д р а т н о г о т р е х ч л е н а к кан о н и ч е­
ско м у ви ду и п р и м ен ен и и ф орм ул:
d x  
1

х  - у-'» 
/ Л 
тт 
Г 
Ж*

= ^ a r c tg i + C, а ^ О .
Ш. 
f ■ ££ъ = ± ± Ы\ а 2 ± х 2\ + С.
И- 
/
^
= ^ b | £ ± i | + C .
IV . 
/ -
dx
v - 
/
xAc
2
±a
= 111 |x ■+• 
s / x 2
± n2 1 -f С, 
a > 0. 
V I. 
J
x d x
\ f
a2±x2
= arcsin — 4- (7.

1
: ± \ / a 2 ± а:2 -f C.
VII.
J Vrt2 — х2 
dx
= j \/а2 
— 
х2 +
VIII.
J \ / х2 ± a2 dx 

j \/х2 
±
а2 ±
Найти интегралы:
6 0 .
/
dx
J Зх - 2х - 1
◄ Имеем

< 1 
СО
Н
“^3
' ( 
II
"S3
(« - l
) 2
■In
X —
1
За: + 1
+ C, 
x ^

ф
1. ►

x dx
J
x4 — 2x2 — 1
◄ Очевидно,
f
x dx 
_
1 
f
d( x2
— 1
_
1
J
x* - 2x2 - 1 
~ 2 J
(x2 - l ) 2 - 2 ~ 4 ^ 2 1П
6 2 . / - ■
g + -
1
-
f c .

X 2 

X
 
+ 1
^ Пользуясь свойством г), п. 1.2, получаем
-
1
- V
2
- 1
+
\ / 2
+ С, 
х ф ± \ А + л/2.
/ ,» ++; + ■
i jO
* ( *+ В ° § : +
*+]) + т г " clg 
+ с -
6 3 .
I
sin х +
2
cos х + 3
^ Имеем
Д . ) =
/ . , 
------------
_
=
2 / -"(«Й
J
2
sin - cos -

1

4 cos
2
-
J
tg - +
1
1
1
= arctg — --------
1
C„,
(ts f + 1) + 4
2
nx — x < x < x +
2
nx.
Из непрерывности первообразной следует 
/ ( х +
2
их — 
0
) = / ( х +
2
их +
0
), 
н € Z, 
— + С'„ = — — + C>i+i> 
Cn+i = х + Сп.
Отсюда находим Сп = пж + С, где С = Со — произвольная постоянная. Поскольку 2«х —х < 
х < х +
2
»х, т. е.
'х + х'
х + х
н < —— < н + 1, 
то « =
2
х
2
х
Таким образом,
I (x ) 
= a r c tg
tg f- +
1
+ х
X + X
2
х
+ С, 
х ф 
х
+
2
пх, 
/( х +
2
дх) 
=
lim 
• /(х ), 
п‘*€'2. ►
а?-*тг+2п7г


220
Гл. 3. Неопределенный интеграл
/
dx
6 4 . . 
/__________
л/5 
х — х 2 
◄ Очевидно,
х dx
( х - \ ) dx 
1
dx
v 5 + x — х 2 
\/5 + х — х 2 
2
откуда
f
",—

= ~ v /5 + i - x
2
+
у т/5 + X - х 2
/
х3 dx 
л/х4 — 2х2 — 

◄ Имеем при |х| > v T + л
/ 2

, 2 i - l
1 - \/21 
1 + л/21
„ arcsin —
+ С
2
л/21
< х <
6 5
: d(x2) 
_ (х2 — 
1
) d(x
2
— 
1
) i 
1
d(x
2
— 
1
)
--------------------- ----------------------------------------------
1
- — . --------------------------
откуда
у/х* -  
2 * 2
_
1
2 х/ ( х 2 - I
) 2
- 4
2 у /(х
2
- I
) 2
- 4

у
( х 2
_
1 )2
_ 4 ’
/ / 
4
- ^■Г=== = ^
\ / ж4
-
2
х
2
-
1
+ ^ In |х
2
-
1
+ \ / х
4
-
2
х
2
-
1
| + С. ► 
7
л/х — 
2
х
2
— 
1
2
2
• М
6 6
. / \ /
2
+ ж — г
2
dx.
◄ Имеем при —1 ^ х ^ 2
/ ^2+х- х2'/х=
/
(
*
-
 у = ^ v 1^
1
+ х — х
2
dx =
j 
— х + х ) rfx

. 2x - 1
+ x — x
2
+ — arcsin — ----- |-C. ►
8
3
n
V T + x —X

◄ При |x — 
< туУ x / 0, имеем
4
1 - X +
X J
:y/l + x — x
2
dx
/
dx 
Г 
x — 
1
хл/1 +
x — x2 
J
t
/ 1 +
x — x2
dx.
В первом интеграле положим j^y = t. Получим
j
dx 
f
J x V l + a: — x
2
У
dt
s j t 2 + t 
S g l l X — 1
-In
1
+
L - 2
---- (- \ j t 2 + t Sgnx 
- 1
= — In
2
x -f- 
2
\ / l H- iC —
Второй интеграл вычисляется непосредственно:
/
■ 
f
(-2x + l)dx 

Г 
d { x - \ )
/ 7 7 7
J
\/ l 
+
x — x 2 
 
2
л
/1
+ X — x
2
2
 
^/5
_
^
_
1_^2
---- г 

. 2x - 1
— x
2
---- a rc sm -----
7
=^—.
2
л/5
Окончательно имеем
7 = — In
2
+ x + 2 л / 1 + x — x 2
— 
\ / 1
+
1

2
x -
1
x — x
2
---- arcsin
V5
+ a ►
6 8 .
[ ^ . l = d x .
J X \ / x A + 1
X


§ 2. Интегрирование рациональных функций
221
◄ При х ф 
0
имеем
..х . 
dx = sgn 
f

д3. 
dx = sgn 
f
x V ^ T l
 
/ т-2 i _i_ 
J
d ( x ~ l )
= sgn 
X 
• In
+ ^
-f C = sgn x • In
ж
2
-
1
+ V
* 4
+
1
+ c.
 ►
Упражнения для самостоятельной работы
Найти интегралы:
1

f y r = t e d x .
 
2
. /^
5
^ . з. /
dx
*f 4 х + 4
d x
4 x
2
-|-4x-{-5
• 
4 . / -
sin
2
x d x
3
c o s
2
x + b
2
s i n
2
x ’ 
x
3
+ 4 x + 9
d x
s+2
dx.
« • / Т О Т -
» € N .
8 . / ^ , * 6 N .
1
»
' / ^
'
11 - / d h -
1 2 . f c o s
3
x d x . 
13. f e - ^ - ' x d x .
1 4 .f e * 2 * d x .
1
5
- / C
0
S I ' f r -
!«• f ' ^ d x - 
17 - f 7 7 f k -  
1®’ f t f f x d x .  
19. / c o s
2
ж dx. 
ч
2 0
. f x y / x ^ + l d x . 21. J (x + ^) V ^ + T + i d x .  
2 2
. /
■. оч 
Г (»+!)<*»
J
J V
2 /
J * 3 + § * 2 + 3 * + l
J 0 + s « + « a
2 4 . / ^ , x > l .
25. /£ & -< * * , O l .
26. /ln [x ]d x , x > 2. 
27. /p ^ g p r ', * >
1
.
28. f
da. 
29. f

3 0 . 
31. Г ------ * -d*
j
* ( ! + * )
j
* 2 - !
J ( 1
+ * 2 ) 3' 2
j
( ,3 - +
1
) » ^ a + T
32. f


Достарыңызбен бөлісу:
1   ...   84   85   86   87   88   89   90   91   ...   135




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет