Математический анализ: введение в анализ, производная, интеграл



Pdf көрінісі
бет92/135
Дата31.10.2022
өлшемі16,21 Mb.
#46579
1   ...   88   89   90   91   92   93   94   95   ...   135
Байланысты:
Anti-Demidovich Lyashko I I i dr Tom 1 Vvedenie v matematicheskij analiz proizvodnaja integral 2001 ru T 358s

01

,
x(l + x ‘)
Полагая x
7
= t, получаем
. dx = l f J L i L d t - i
/ , Й ± 1 Ь « Л = 1
f ( i - - L - ) dt =  
J
x (l + x7) 
7 j  t(l + t) 
7 j  
< ( l+ t)

J \ t  
1
+
1
/
=
1
(
1
п | < | -
21
п
|1
+
1
|) + С = |
1
п У
^ - + С, * *
0
; -
1
. ►


232
Гл. 3. Неопределенный интеграл
9 2 . /
- — +2 1 
dx.
J
X4 + X2 + 1
Имеем при х ф О
[
*’ + > 
1 х - [  
1
+ g
f a - [ <(’ - 7 )
J x * + x 2 +

j xi + i + ‘ 
J и -L

Ci, если x > О,
(x _ I
) 2
3
_ л/З аГСЦ 7 7 Г + i C’2’ еСЛИ * < °-
Вследствие непрерывности первообразной имеем
Ф ( - 0 ) =
+ С з = —
2
>Д 
2\/3
где Ф(х) — первообразная подынтегральной функции.
+ C l
= Ф( + 0),
Т аки м образом,
/
± 1 -
dx =
I ^
arc‘e S
+ ^
s g n I + Cl 
I ? 4 0 ’
9 3 7
X
4
+ X
2
+
1
х
2
-
1
С ,
х
= 0.
X
4
+ X
3
+ X
2
+ X +

После очевидных преобразований имеем
J
 
х
4
+ х
3
+ х
2
+ х +
1
dx 
J x2 
+ x + i + L + J - dx 
j
d(x + i)
7 + 7
+
7
+
7 - 1
- !
**7 + 1 + 7
7
+ i + 
7
2 -
9 4 . / ~ г т т
dx-
J
x 8 + 1
Аналогично предыдущему примеру имеем
- = J - \  n
2
xa + (
1
- V ^ ) £ +
2
+ a > >

л/5 
2
x
2
+
(1
+ V5)x +
2

f xb 
— X
’ 
J
x8T T
Аналогичнс
f
Xs — X 


f
X* — 

, , 2ч 

f

 
7
j / 2 \
J
 JTPT
'11
 = 
2
 
J
 
5
ТГ 

5
 
J
^
'*<* > =
= i 
J d
 7 2 + 7)____i
95.
J
X® + 1
7 2

7
)
£ 1 ^ 4 + 1
+ с . .
4л/2 
x
4
+ х
2
л/2 + 1
-4 Производя надлежащие преобразования, получаем

4
— х


2
+
1
)(х
4
f х*
1
_
4
— х
2
+
1
) + X
2
J _ f dx 
x
2
<7x _
J
x6 + 1 
J
(x2 + l)(x 4 — x2 + 1) 
J x2 + l + J
x6 + l
f dx 
i f d(x3)
1

J
 P + T 
+ 3 
J
 ^+T = arctg 
1
 + з arcts (x } + c•
9 6 . 
Вывести рекуррентную формулу для вычисления интеграла 7
dx
а ф 
0
. Пользуясь этой формулой, вычислить /з =
 
◄ Используя тождество
■ - /
<7х
(ах
2
+ Ьх + с)" ’

2
+ х + I
)3
+ Ьх + с = ^ - ( (
2
ах + Ь
)2
+ (4ас — Ь2))
и производя замену 
2
ах + Ь = t, получаем
2“ 
J
dt
(t2 + Д )" ’
где Д = 4ас — Ь2.


§ 3. Интегрирование иррациональных функций
233
Интегрируя по частям 
I n - i
, получаем
I n —i

_ (4аУ
t
2(1
- о /
г + Д - Д
2а 
^ ( « г + Д ) ’1- 1 
" v" 
J
(<2 + Д ) "
_
(4a)n~ 1t 
_ (4а)п-1 (1 — 
п )
2
а(? + Д
)п_1
а
7
d t j =
dt
(t2 
+ Д)ITT + О - n)
(4,
■ P J
dt
(f
2
+ Д ) " ’
T. e. 
In
1 

((2 + Д)п-1 
2(1 П)1п-1 +
2
(
1
-n)A
In.
Решая это равенство относительно 1п , находим
In
= —
(4-)’
, (3 — 
2
п) 
2
а г 
1"-1 + (1 - п ) А 1п~Ь
Д(1 — п
)(<2
+ Д
)"-1
(1
— тг)Д
Подставляя вместо < его значение, окончательно имеем
т 
2ах + b 

2
и — 3 
2
а
1п1 
" ■
’ 
: \п-1 +
1п — 1 •
(к — 
1
)Д(ах
2
+ Ъх + с
)п-1
' п — 1 
Д 
В предложенном примере а = Ь = с = 
1
, м = 3, Д = 4. Таким образом, 
2
х +
1
У 
dx 
2
х +
1
2
х +
6

2
+ х + I
)2
¥ +
/

2
+ X + I
)2
6

2
+ X + I
)2
3(х
2
+ X
2
х +
1
2
х +
1

+ - /
+
1


J
dx
X
2
+ X +
1
6(х2 + х + 1)2 
3(х2 + х + 1) 
3 ^ 3
Упражнения для самостоятельной работы
Методом неопределенных коэффициентов найти интегралы:
87‘ I
d*• 
88- / ( ^ f e
) 2
<**■ 
89- /
*
, 4
2х + 1
+ —7? arctg --- т=- + С. ►
л/3
90. Г
J .
- 5
я
:2 + 6
da;
:г(4 + л:2 ) 2(1 + я;2 ) 
9 1 * ^ а-7_ 4 a;5^.g:r3 _ 4д; * 
J х 5+лг4 + х 3 + а:2 + а:+1
Найти рациональную часть в следующих интегралах:
93 
Г Зя-_5+4а;3 + а: , 
д4 
г 
(2_--Зд+лг2) da.- 
0(- 

.7 .. 
ой
Г А^б4х7-7**
J ( х
3
+ х +
1)2
WX* 
J ( r J . n
2
(
1
:
2
i r J . n
2
-
+ 6 х + 3 )
dx
92- / р

dx.
(j?+l)
2
(a:
2
+jc+l
)2
95
- / ( f i W
da:- 
06-
Я
(1 + х « ) 2
dx.
§ 3. И нтегрирование иррациональных функций
С помощью приведения подынтегральных выражений к рациональным функциям найти 
следующие интегралы:
J х^/2 + х 
1
ол;
/
dx = 3 [  T l r — dt = 3 /
У Х + У 2 Т 7
J
t3 + 
t -

J
97. / —ДДДД=Z=dx, 
х Ф —
1. 
◄ Полагая х +
2
=
(3
, имеем
t — t +
( t - l ) {t 2 + t + 2)

4

2
= 4* " 2* +
dt =
/
3t2 -
6
t
( t -
l)(t2 + t + 2)
К последнему интегралу применим метод неопределенных коэффициентов:
3
(2
-
6
t
dt.
Л 
Bt + C
( t - l)(t
2
+ t +
2

t
- 1
t
2
+ t +
2
'
Отсюда находим
и вычисляем интеграл
А - Л
4 ’ 
4 ’
Г 
3t
2
- 6
_ 3 f dt 
15 f
J
( t - l ) ( t
2
+ t +
2
) d<~
4 J t
- 1
+ 4 
J t2 + t + 
2
6’ =
- 2
dt
= - - I n |t - 1| + — ln |t +
t
+ 2 |------
■=.
arctg —
r=- + C .

1
1
8
4 - /f
V7


234
Гл. 3. Неопределенный интеграл
Окончательно имеем 
J xf/2 + x 

3
х + ^/2 + х
9 8 .
[
 
, xdx 
а >  
0
.
У 
х3(а — х)
А Заметим, что
dx =
-
! <2
- ! ln lf - Jl + Т
1п(<2
+ *+ 2) “ Г
/5
arctg 
+ С. ►
4
_2 7 _
4 V T
2
< +
1
>/7
7
= [ }1 ^ х=
 = [ * f j~ d x , 0 < х < а
У \/х3(а — х) 
У 
V “ 
1

<4
приводит к интегралу р
\ / х 3(а — х)
Подстановка 
= t
4
приводит к интегралу рациональной 
Функции
0
< 't < +оо.
Интегрируя по частям, находим
т 
^
р  

at
5
Г
1 = а-———
;— а I ------
7
at = ----- ;— at + а I -
1
t4 
 
1
t4 
1
+ t
4
У 
1
dt
at
+ t
4
a h
dt
1
+
14
' “ у
1
+
<4
Последний интеграл вычислим путем преобразования подынтегрального выражения:
(1
+ t2) 
+
(1
- i
d t - l l
1
+ * dt 
1
/ * 
j dt
1
+ t4
2
J
1
+ t
4
2
У 
1
+ t
4
1
+ ^ dt 
1 J( l ~ h dt
1
d (* 
-
t


1
/
<’ + £
2 J ( t - \ ) 2 + 2  
2
7
2
1
. t
2
-
1
= —
f
arctg ----—
2
V
2
tx
/2
d (* + т)
+

at 
а , t
2
+ tV ^ 
+ 1

t
2
-
1
^
7 = - ——- Н-----т= I n ----- —р -------1- — ■= arctg ---- + С.
1
1
4
4
ч
/ 2 
t
2
- tV
2
+ 1
2
л
/2
tx
/2
:ln
Таким образом, окончательно получим
- -


ч' 
(и — натуральное число).
\J[x — a
)n+1
(х — b)n- 
◄ Заметим, что
!

dx 
/ -
У 
\ /{х — а)п+1(х — Ь)п~4 
У »
Ух
у/(х — a)n+1(x — Ь)г 
Положим 
= tn . Тогда , d--;, = -H-t™-1 dt и
/ =
» 
/ p i y t =
5
-
2
- [ d t = ^ t + c = 1^ ; [ ^ + c . >
b — a J tn~4 
b — a J
b — a 
b — a у x — a
Применяя формулу
f P” i x ) 
J
/~i 

\

\
[
d x

У 

У
где у — Уах
2
+ bx + с, Рп(х) — многочлен степени п, Qn- \ (х) — многочлен степени п — 
1
и 
А — число, найти следующие интегралы:
100
[
У VI + 
2
х — х2
Имеем
г d x .
[
х dx .... = (Их
2
+ Вх  + С) \А +
2
х — х
2
+ А [
У V1 + 2х - х2 

'
J
d x
V ^ - ( z - l
)2


§ 3. Интегрирование иррациональных функций
235
Дифференцируя это тождество и приводя к общему знаменателю, получаем х
3
= (2Ах+В)(1 + 
2х — х2) + (Ах
2
+ Вх  + С
')(1
— х) + А, откуда
„ з
1 = - З А ,
О = 5А -
2
В,
О =
2
А + ЗВ - С, 
О = В + С + \,
л
 

г, 


19 
. л
3 ’ 
6
’ 
3 ’
Таким образом, окончательно имеем при |х — 
1
| < -\/2 
х3 dx 
°~2
/
101
◄ Имеем
л
/1
+ 2 х — х2
. J
х
4
\ / а 2 — х2 dx.
2х + 5 х + 19 
/1
 
~ 
т 

. х — 1 

----------------- \/1 +
2
х — х
2
+ 4 arcsin —■=- + С.
6
V
2
[ х* \ / а 2 — х2 dx = ( а Д . .

Jа2 - :

 dx =
= (Ат
5
+ Вх* + Сх3 + Dx
2
+ Ex + F) 
\J
а2 — 
x2 
+ A 
J
dx
Va
2
- x ? ’
откуда
a
2
x
4
- x
6
= (5Ax
4
+ 4Bx
3
+ 3C'x
2
+ 2Dx + E)(a2 - x2) -  x(Ax
5
+ Bx* + Cx3 + D x 2 + Ex + F)+A.  
Для определения коэффициентов разложения сравниваем коэффициенты при одинаковых
степенях х:
-1 = —
6
А,
О = - 5 В,
а2 - Ъа2 А - 4С,
0 = 4
В о 1 
- 3D,
0 = ЗС'а
2
- 2Е, 
0 = 2Da2 - F,
0
= Еа2 + А.
Из этой системы находим
1
А = - , в =  0, С:
А , D = o. * =
г - о .  л = |1 .
Следовательно,

- (( 'ТГ-Tifj v'»'-*2 + п “™ й + с’ 1*1« и-
102
7
(х + l)s \ / i
2
+
2
х
◄ Применяя подстановку 
х
+
1
=
i
получаем
=
/
dx
_ _ <
4
ф |
J
^/ПTF'
Имеем
( х + I
) 5
V x
2
+
2
х
- / ^ = ^ = ( ^ | Ч 5
|<|2
+ С ^| + / ) ) \ / Г ^ + А у ’ - ^ L
Дифференцируя по |t| 
и
приводя 
к
общему знаменателю, получаем тождество —Itl
4
=
(ЗА
|<|2
+ 2В|*| + С)(1 - |<П - |<|(А
|<|3
+ Д
|«|2
+ C |t| + D) + А, откуда
W
4
- 1
= -4А ,
1*1
Itl
3 0
- з в ,
1
*
1
°
1

0
= ЗА - 2 С,
> 4 = 1 ,
5 == 
0

С =
3
4
8

0 = 2 В - D, 
0
= С + Л,




Достарыңызбен бөлісу:
1   ...   88   89   90   91   92   93   94   95   ...   135




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет